氧化石墨烯的制备、表征及其对发酵液中鼠李糖脂吸附分离特性

崔莹, 聂麦茜, 聂红云, 第五振军, 孙涵. 氧化石墨烯的制备、表征及其对发酵液中鼠李糖脂吸附分离特性[J]. 环境化学, 2019, (10): 2294-2299. doi: 10.7524/j.issn.0254-6108.2018112604
引用本文: 崔莹, 聂麦茜, 聂红云, 第五振军, 孙涵. 氧化石墨烯的制备、表征及其对发酵液中鼠李糖脂吸附分离特性[J]. 环境化学, 2019, (10): 2294-2299. doi: 10.7524/j.issn.0254-6108.2018112604
CUI Ying, NIE Maiqian, NIE Hongyun, DIWU Zhenjun, SUN Han. Preparation and characterization of graphene oxide and its adsorption and separation properties of rhamnolipid from fermentation broth[J]. Environmental Chemistry, 2019, (10): 2294-2299. doi: 10.7524/j.issn.0254-6108.2018112604
Citation: CUI Ying, NIE Maiqian, NIE Hongyun, DIWU Zhenjun, SUN Han. Preparation and characterization of graphene oxide and its adsorption and separation properties of rhamnolipid from fermentation broth[J]. Environmental Chemistry, 2019, (10): 2294-2299. doi: 10.7524/j.issn.0254-6108.2018112604

氧化石墨烯的制备、表征及其对发酵液中鼠李糖脂吸附分离特性

    通讯作者: 聂麦茜, E-mail: niemaiqian@xauat.edu.cn
  • 基金项目:

    中国博士后科学基金(2018M633479),陕西省科技厅重点产业创新链项目(20192DLSF05-04)和陕西省教育厅科研计划项目(18JK0449)资助.

Preparation and characterization of graphene oxide and its adsorption and separation properties of rhamnolipid from fermentation broth

    Corresponding author: NIE Maiqian, niemaiqian@xauat.edu.cn
  • Fund Project: Supported by China Postdoctoral Science Foundation (2018M633479), Shaanxi Provincial Department of Science And Technology Key Industrial Innovation Chain Project (20192DLSF05-04) and Shaanxi Provincial Department of Education Scientific Research Program (18JK0449).
  • 摘要: 以改良的Hummers氧化法制备了氧化石墨烯(GO),并研究其对铜绿假单胞菌发酵液中鼠李糖脂(Rha)的吸附分离特性.结果表明,通过Hummers氧化法,可使石墨粉氧化为GO,并形成层数很少甚至单层的GO片,使所得GO的比表面积较石墨粉显著增大.以所得GO对铜绿假单胞菌NY3发酵液中的Rha进行吸附,发现当发酵液的pH值为4.0、吸附温度为25℃时,Rha在GO表面的吸附可迅速平衡,其最大吸附量约为1.7 g·g-1.pH 13的氢氧化钠溶液可使Rha一次洗脱回收率为86.1%,是较佳的洗脱剂.重复利用实验表明,且所得的GO吸附剂可重复利用.
  • 加载中
  • [1] ZULFIQAR ALI RAZA, MUHAMMAD SALEEM KHAN, et al. Evaluation of distant carbon sources in biosuactant production by a gamma ray-jnduced Pseudo-monas putida mutant[J].Pmcess Biochemjstry,2006,42(4):686-692.
    [2] 张天胜. 生物表面活性剂及其应用[M]. 北京:化学工业出版社, 2005. ZHANG T S. Biosurfactant and its application[M]. Beijing:Chemical Industry Press, 2005(in Chinese).
    [3] NEU T R, PORALLA K. Emulsifying agents from bacteria isolated during screening for cells with hydrophobic surfaces[J]. Applied Microbiology & Biotechnology, 1990, 32(5):521-525.
    [4] BODOUR A A, MILLERMAIER R M. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms[J]. Journal of Microbiological Methods, 1998, 32(3):273-280.
    [5] DESAI J D, BANAT I M. Microbial production of surfactants and their commercial potential.[J]. Microbiology & Molecular Biology Reviews Mmbr, 1997, 61(1):47-64.
    [6] 徐仁扣, 赵安珍, 肖双成, 等. 农作物残体制备的生物质炭对水中亚甲基蓝的吸附作用[J]. 环境科学, 2012, 33(1):142-146.

    XU R K, ZHAO A Z, XIAO S C, et al. Adsorption of methylene blue in water by biomass charcoal prepared from crop residues[J]. Environmental Science, 2012, 33(1):142-146(in Chinese).

    [7] 任方旭, 孙全莲, 董文博, 等. 发酵液中鼠李糖脂的活性炭吸附-酸沉淀分离[J]. 化学工程, 2016, 44(7):15-18.

    REN F X, SUN Q L, DONG W B, et al. Activated carbon adsorption-acid precipitation separation of rhamnolipid in fermentation broth[J]. Chemical Engineering, 2016, 44(7):15-18(in Chinese).

    [8] XU D P, YOON S H, MOCHIDA I, et al. Synthesis of mesoporous carbon and its adsorption property to biomolecules[J]. Microporous & Mesoporous Materials, 2008, 115(3):461-468.
    [9] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved Synthesis of Graphene Oxide[J]. ACS NANO, 2010, 4(8):4806-4814.
    [10] GEIM A K. Graphene:status and prospects.[J]. Science, 2009, 324(5934):1530-1534.
    [11] 常虹, 聂麦茜, 葛碧洲, 等. 铜绿假单胞菌NY3所产表面活性剂对原油降解的影响[J]. 环境工程学报, 2013, 7(2):771-776.

    CHANG H, NIE M Q, GE B Z, et al. Effect of surfactants produced by pseudomonas aeruginosa NY3 on crude oil degradation[J]. Chinese Journal of Environmental Engineering, 2013, 7(2):771-776(in Chinese).

    [12]
    [13] CARMEN DOS SANTOS MENDES DE OLIVEIRA, BEZERRA M D S, MELCHUNA A M, et al. Recovery of rhamnolipids produced by pseudomonas aeruginosa using acidic precipitation, extraction, and adsorption on activated carbon[J]. Separation Science & Technology, 2013, 48(18):2852-2859.
    [14] NAGASHIMA A, NUKA K, ITOH H, et al. Electronic states of monolayer graphite formed on TiC(111) surface[J]. Surface Science Letters, 1993, 291(93):93-98.
    [15] CHEN W, YAN< L. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds[J]. Journal of Physical Chemistry C, 2010, 114(47):19885-19890.
    [16] 朱洪胜. 碳源对NY3菌产Rha的影响及其在石油烃污染物降解中的作用研究[D]. 西安:西安建筑科技大学, 2017. ZHU H S. Effect of carbon source on Rha produced by NY3 strain and its role in the degradation of petroleum hydrocarbon pollutants[D]. Xi'an:Xi'an University of Architecture and Technology, 2017(in Chinese).
  • 加载中
计量
  • 文章访问数:  1024
  • HTML全文浏览数:  1024
  • PDF下载数:  28
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-26

氧化石墨烯的制备、表征及其对发酵液中鼠李糖脂吸附分离特性

    通讯作者: 聂麦茜, E-mail: niemaiqian@xauat.edu.cn
  • 1. 西安建筑科技大学环境与市政工程学院, 西安, 710055;
  • 2. 陕西省膜分离重点实验室, 西安, 710055
基金项目:

中国博士后科学基金(2018M633479),陕西省科技厅重点产业创新链项目(20192DLSF05-04)和陕西省教育厅科研计划项目(18JK0449)资助.

摘要: 以改良的Hummers氧化法制备了氧化石墨烯(GO),并研究其对铜绿假单胞菌发酵液中鼠李糖脂(Rha)的吸附分离特性.结果表明,通过Hummers氧化法,可使石墨粉氧化为GO,并形成层数很少甚至单层的GO片,使所得GO的比表面积较石墨粉显著增大.以所得GO对铜绿假单胞菌NY3发酵液中的Rha进行吸附,发现当发酵液的pH值为4.0、吸附温度为25℃时,Rha在GO表面的吸附可迅速平衡,其最大吸附量约为1.7 g·g-1.pH 13的氢氧化钠溶液可使Rha一次洗脱回收率为86.1%,是较佳的洗脱剂.重复利用实验表明,且所得的GO吸附剂可重复利用.

English Abstract

参考文献 (16)

目录

/

返回文章
返回