pH值、离子强度和粒径对氧化石墨烯稳定性的影响

毛翰, 董蕙, Ghosh Saikat, 王振全, 郭进. pH值、离子强度和粒径对氧化石墨烯稳定性的影响[J]. 环境化学, 2019, (10): 2300-2305. doi: 10.7524/j.issn.0254-6108.2018112004
引用本文: 毛翰, 董蕙, Ghosh Saikat, 王振全, 郭进. pH值、离子强度和粒径对氧化石墨烯稳定性的影响[J]. 环境化学, 2019, (10): 2300-2305. doi: 10.7524/j.issn.0254-6108.2018112004
MAO Han, DONG Hui, Ghosh Saikat, WANG Zhenquan, GUO Jin. The effects of pH, ionic strength and particle size on the stability of graphene oxide[J]. Environmental Chemistry, 2019, (10): 2300-2305. doi: 10.7524/j.issn.0254-6108.2018112004
Citation: MAO Han, DONG Hui, Ghosh Saikat, WANG Zhenquan, GUO Jin. The effects of pH, ionic strength and particle size on the stability of graphene oxide[J]. Environmental Chemistry, 2019, (10): 2300-2305. doi: 10.7524/j.issn.0254-6108.2018112004

pH值、离子强度和粒径对氧化石墨烯稳定性的影响

    通讯作者: Ghosh Saikat, E-mail: sghosh12@qq.com
  • 基金项目:

    国家自然科学基金(41573100)资助.

The effects of pH, ionic strength and particle size on the stability of graphene oxide

    Corresponding author: Ghosh Saikat, sghosh12@qq.com
  • Fund Project: Supported by the National Natural Science Foundation of China (41573100).
  • 摘要: 氧化石墨烯(Graphene oxide,GO)表面具有丰富的官能团和较高的比表面积,能够作为膜材料应用于膜分离技术.然而,目前合成GO的技术很难保证其横向尺寸的均一性.此外,GO在自然水环境中分散性的稳定性受环境中pH值和离子强度的影响.本文研究了横向尺寸、pH值和离子强度对GO表面双电层电荷或结构组装所需的相互作用力的影响.从原位原子力显微镜(Atomic force microscope,AFM)获得的力-距离曲线(F-D)可以看出,溶液条件对DLVO力的作用.GO的双电层静电斥力随着pH值的升高而增大,这可能是由于表面官能团的电离作用增强所致.但随着离子强度的增加,双电层斥力减小,得到的数据与DLVO理论一致.通过Zeta电位和开尔文探针力显微镜(Kelvin probe force microscopy,KPFM)测量,确定了氧化石墨烯片层表面电荷的不均匀性.
  • 加载中
  • [1] KUILLA T, BHADRA S, YAO D, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science, 2010, 35(11):1350-1375.
    [2] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide:Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(46):3906-3924.
    [3] HUNTER R J. Electrokinetics and the zetapotential. foundations of colloid science[M].New York:Oxford University Press, 2001,376-377.
    [4] WANG X, BAI H, SHI G. Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation[J]. Journal of the American Chemical Society, 2011, 133(16):6338-6342.
    [5] WANG J, CHEN B. Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials[J]. Chemical Engineering Journal, 2015, 281:379-388.
    [6] 闫帅欣, 王方, 王中良. 氧化石墨烯对水环境中金属离子的吸附作用研究进展[J]. 环境化学, 2018, 37(5):180-189.

    YAN S X, WANG F, WANG Z L. Adsorption of metal ions to graphene oxide in aquatic environment[J]. Environmental Chemistry, 2018, 37(5):1089-1098(in Chinese).

    [7] WENG L, RIEMSDIJK W H V, HIEMSTRA T. Adsorption of humic acids onto goethite:Effects of molar mass, pH and ionic strength[J]. Journal of Colloid and Interface Science, 2007, 314(1):107-118.
    [8] LANPHERE J D, ROGERS B, LUTH C, et al. Stability and transport of graphene oxide nanoparticles in groundwater and surface water[J]. Environmental Engineering Science, 2014, 31(7):350-359.
    [9] TAMAS SZABÓ, OTTO BERKESI, PETER FORGÓ, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials, 2015, 18(11):2740-2749.
    [10] YE N, WANG Z, WANG S, et al. Aqueous aggregation and stability of graphene nanoplatelets, graphene oxide, and reduced graphene oxide in simulated natural environmental conditions:complex roles of surface and solution chemistry[J]. Environmental Science and Pollution Research, 2018. 25(11)10956-10965.
    [11] LI D, MULLER, MARC B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2):101-105.
    [12] MELITZ W, SHEN J, KUMMEL A C, et al. Kelvin probe force microscopy and its application[J]. Surface Science Reports, 2011, 66(1):1-27.
    [13] DUFRENE Y F, MARTINEZ-MARTÍN D, MEDALSY I, et al. Multiparametric imaging of biological systems by force-distance curve-based AFM[J]. Nature Methods, 2013, 10(9):847-854.
    [14] KIRBY B J, JR E F H. Zeta potential of microfluidic substrates:1. theory, experimental techniques, and effects on separations[J]. Electrophoresis, 2010, 25(2):187-202.
    [15] KONKENA B, VASUDEVAN S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements.[J]. Journal of Physical Chemistry Letters, 2012, 3(7):867-872.
    [16] 伊斯雷尔奇维利. 分子间力和表面力(原书第三版). 王晓琳等译.[M].北京:科学出版社,2014. ISRAELACHVILI J H. Intermolecular and surface forces (third edition).[M]. Beijing:Science Press, 2014(in Chinese).
    [17] NINHAN B W, YAMINSKY V. Ion binding and ion specificity:The hofmeister effect and onsager and lifshitz theories[J]. Langmuir, 1997, 13(7):2097-2108.
    [18] GREBRRG H, KJELLANDER R. Charge inversion in electric double layers and effects of different sizes for counterions and coions[J]. The Journal of Chemical Physics, 1998, 108(7):2940-2953.
  • 加载中
计量
  • 文章访问数:  2976
  • HTML全文浏览数:  2976
  • PDF下载数:  120
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-20

pH值、离子强度和粒径对氧化石墨烯稳定性的影响

    通讯作者: Ghosh Saikat, E-mail: sghosh12@qq.com
  • 1. 昆明理工大学环境科学与工程学院, 昆明, 650504;
  • 2. 云南省红河州环境监测站, 红河, 661100
基金项目:

国家自然科学基金(41573100)资助.

摘要: 氧化石墨烯(Graphene oxide,GO)表面具有丰富的官能团和较高的比表面积,能够作为膜材料应用于膜分离技术.然而,目前合成GO的技术很难保证其横向尺寸的均一性.此外,GO在自然水环境中分散性的稳定性受环境中pH值和离子强度的影响.本文研究了横向尺寸、pH值和离子强度对GO表面双电层电荷或结构组装所需的相互作用力的影响.从原位原子力显微镜(Atomic force microscope,AFM)获得的力-距离曲线(F-D)可以看出,溶液条件对DLVO力的作用.GO的双电层静电斥力随着pH值的升高而增大,这可能是由于表面官能团的电离作用增强所致.但随着离子强度的增加,双电层斥力减小,得到的数据与DLVO理论一致.通过Zeta电位和开尔文探针力显微镜(Kelvin probe force microscopy,KPFM)测量,确定了氧化石墨烯片层表面电荷的不均匀性.

English Abstract

参考文献 (18)

目录

/

返回文章
返回