自动进样系统结合电化学法检测河水中总铁

潘飞, 潘大为, 韩海涛, 王晨晨. 自动进样系统结合电化学法检测河水中总铁[J]. 环境化学, 2019, (10): 2229-2236. doi: 10.7524/j.issn.0254-6108.2018112616
引用本文: 潘飞, 潘大为, 韩海涛, 王晨晨. 自动进样系统结合电化学法检测河水中总铁[J]. 环境化学, 2019, (10): 2229-2236. doi: 10.7524/j.issn.0254-6108.2018112616
PAN Fei, PAN Dawei, HAN Haitao, WANG Chenchen. Electrochemical method detect the iron in the river based on AuNPs-nafion modified electrode combined with automatic sampling system[J]. Environmental Chemistry, 2019, (10): 2229-2236. doi: 10.7524/j.issn.0254-6108.2018112616
Citation: PAN Fei, PAN Dawei, HAN Haitao, WANG Chenchen. Electrochemical method detect the iron in the river based on AuNPs-nafion modified electrode combined with automatic sampling system[J]. Environmental Chemistry, 2019, (10): 2229-2236. doi: 10.7524/j.issn.0254-6108.2018112616

自动进样系统结合电化学法检测河水中总铁

    通讯作者: 潘大为, E-mail: dwpan@yic.ac.cn
  • 基金项目:

    国家自然科学基金(41276093)资助.

Electrochemical method detect the iron in the river based on AuNPs-nafion modified electrode combined with automatic sampling system

    Corresponding author: PAN Dawei, dwpan@yic.ac.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(41276093).
  • 摘要: 基于自动进样技术结合纳米金(AuNPs)-全氟磺酸(Nafion)修饰电极研制了一种新型的检测系统.通过对检测系统不同条件的优化,如修饰电极的材料、富集时间等条件;在最优条件下,该仪器对于Fe(Ⅲ)的检出限为4.5 nmol·L-1,线性范围为25 nmol·L-1—1 μmol·L-1,最终实现了对河水中总铁含量的检测.将此检测系统与ICP-AES相比较,检测结果基本一致.该仪器具有方便快捷、检测成本低等优点,在实时检测中具有广泛的应用前景.
  • 加载中
  • [1] PENG B, SHEN Y P, GAO Z T, et al. Determination of total iron in water and foods by dispersive liquid-liquid microextraction coupled with microvolume UV-vis spectrophotometry[J]. Food Chemistry, 2015, 176:288-293.
    [2] POIRIER L, NELSON J, LEONG D, et al. Application of ICP-MS and ICP-OES on the determination of nickel, vanadium, iron, and calcium in petroleum crude oils via direct dilution[J]. Energy & Fuels, 2016, 30(5):3783-3790.
    [3] BAYTAK S, ARALAN Z. solid phase extraction of trace elements in water and tissue samples on a mini column with diphenylcarbazone impregnated nano-TiO2 and their determination by inductively coupled plasma optical emission spectrometry[J]. Clean-Soil, Air, Water, 2015, 43(6):822-829.
    [4] LI Y T, GUO W, WU Z W, et al. Determination of ultra-trace rare earth elements in high-salt groundwater using aerosol dilution inductively coupled plasma-mass spectrometry (ICP-MS) after iron hydroxide co-precipitation[J]. Microchemical Journal, 2016, 126:194-199.
    [5] MENDIL D, KARATAS M, TUZEN M. Separation and preconcentration of Cu (II), Pb (II), Zn (II), Fe (III) and Cr (III) ions with coprecipitation method without carrier element and their determination in food and water samples[J]. Food Chemistry, 2015, 177:320-324.
    [6] PERRING L, NICOLAS M, ANDREY D, et al. Development and validation of an ED-XRF method for the fast quantification of mineral elements in dry pet food samples[J]. Food Analytical Methods, 2017, 10(5):1469-1478.
    [7] 姜晨阳, 潘飞, 庄旭明, 等. 分散液液微萃取-能量色散X射线荧光光谱法测定环境水样中的痕量铜[J]. 环境化学, 2017, 36(8):1795-1801.

    JIANG C Y, PAN F, ZHUANG X M, et al. Determination of trace copper in environmental water samples by dispersive liquid-liquid microextraction and energy dispersive X-ray fluorescence spectroscopy[J]. Environmental Chemistry, 2017, 36(8):1795-1801(in Chinese).

    [8] LIN M Y, PAN D W, HU X P, et al. Titanium carbide nanoparticles/ion-exchange polymer-based sensor for catalytic stripping determination of trace iron in coastal waters[J]. Sensors and Actuators B:Chemical, 2015, 219:164-170.
    [9] LIN M Y, HAN H T, PAN D W, et al. Voltammetric determination of total dissolved iron in coastal waters using a glassy carbon electrode modified with reduced graphene oxide, Methylene Blue and gold nanoparticles[J]. Microchimica Acta, 2015, 182(3-4):805-813.
    [10] ZHANG Y, XIE Y L, TANG A D, et al. Precious-metal nanoparticles anchored onto functionalized halloysite nanotubes[J]. Industrial & Engineering Chemistry Research, 2014, 53(13):5507-5514.
    [11] MIRZAEI A, JANGHORBAN K, HASHEMI B, et al. Metal-core@metal oxide-shell nanomaterials for gas-sensing applications:a review[J]. Journal of Nanoparticle Research, 2015, 17(9):(371) 1-36.
    [12] YANG C, DENNO M E, PYAKUREL P, et al. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules:A review[J]. Analytica Chimica Acta, 2015, 887:17-37.
    [13] SEDIGHI K S, MAZLOUM A M, RABBANI K M, et al. Detection of aflD gene in contaminated pistachio with Aspergillus flavus by DNA based electrochemical biosensor[J]. International Journal of Food Properties, 2017, 20(sup1):119-130.
    [14] 吴志珊, 宋伟, 许丹科, 等. 金纳米粒子修饰丝网印刷电极测定化妆品中的汞含量[J]. 环境化学, 2017, 36(4):885-891.

    WU Z S, SONG W, XU D K, et al. Detection of Hg (Ⅱ) in cosmetics on screen-printed carbon electrodes modified with gold nano-particles[J]. Environmental Chemistry, 2017, 36(4):885-891(in Chinese).

    [15] 胡晓琴, 冯荣荣, 高楼军, 等. 纳米金-Nafion修饰金电极电化学阻抗法测定人端粒DNA[J]. 分析试验室, 2015, 34(12):1442-1446.

    HU X Q, FENG R R, GAO L J, et al. Electrochemical impedance spectroscopic detection of human telomere DNA based on gold nanoparticlenafion modified gold electrode[J]. Chinese Journal of Analysis Laboratory, 2015, 34(12):1442-1446(in Chinese).

  • 加载中
计量
  • 文章访问数:  1039
  • HTML全文浏览数:  1039
  • PDF下载数:  25
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-26

自动进样系统结合电化学法检测河水中总铁

    通讯作者: 潘大为, E-mail: dwpan@yic.ac.cn
  • 1. 中国科学院海岸带环境过程与生态修复重点实验室, 山东省海岸带环境工程技术研究中心, 中国科学院烟台海岸带研究所, 烟台, 264003;
  • 2. 中国科学院大学, 北京, 100049
基金项目:

国家自然科学基金(41276093)资助.

摘要: 基于自动进样技术结合纳米金(AuNPs)-全氟磺酸(Nafion)修饰电极研制了一种新型的检测系统.通过对检测系统不同条件的优化,如修饰电极的材料、富集时间等条件;在最优条件下,该仪器对于Fe(Ⅲ)的检出限为4.5 nmol·L-1,线性范围为25 nmol·L-1—1 μmol·L-1,最终实现了对河水中总铁含量的检测.将此检测系统与ICP-AES相比较,检测结果基本一致.该仪器具有方便快捷、检测成本低等优点,在实时检测中具有广泛的应用前景.

English Abstract

参考文献 (15)

目录

/

返回文章
返回