不同燃料当量比条件下烟炱(soot)形态及光吸收增强效应

马鑫, 马嫣, 郑军, 黄聪聪. 不同燃料当量比条件下烟炱(soot)形态及光吸收增强效应[J]. 环境化学, 2019, (10): 2237-2246. doi: 10.7524/j.issn.0254-6108.2018112707
引用本文: 马鑫, 马嫣, 郑军, 黄聪聪. 不同燃料当量比条件下烟炱(soot)形态及光吸收增强效应[J]. 环境化学, 2019, (10): 2237-2246. doi: 10.7524/j.issn.0254-6108.2018112707
MA Xin, MA Yan, ZHENG Jun, HUANG Congcong. The morphology of soot and light absorption enhancement under different condition of fuel equivalence ratio[J]. Environmental Chemistry, 2019, (10): 2237-2246. doi: 10.7524/j.issn.0254-6108.2018112707
Citation: MA Xin, MA Yan, ZHENG Jun, HUANG Congcong. The morphology of soot and light absorption enhancement under different condition of fuel equivalence ratio[J]. Environmental Chemistry, 2019, (10): 2237-2246. doi: 10.7524/j.issn.0254-6108.2018112707

不同燃料当量比条件下烟炱(soot)形态及光吸收增强效应

    通讯作者: 马嫣, E-mail: my_nj@163.com
  • 基金项目:

    国家重点研发计划(2016YFC0202402)和国家自然科学基金(41675126,41730106)资助.

The morphology of soot and light absorption enhancement under different condition of fuel equivalence ratio

    Corresponding author: MA Yan, my_nj@163.com
  • Fund Project: Supported by the National Key Research and Development Project (2016YFC0202402) and the National Natural Science Foundation of China (41675126,41730106).
  • 摘要: 借助烟炱(soot)燃烧炉、扫描电迁移率粒径谱仪(SMPS)、气溶胶质量分析仪(APM)、三波段光声黑碳仪(PASS-3)探究不同燃料当量比(φ)条件下soot形态及光吸收增强效应.结果显示,随着燃料当量比(φ)从1.98升高至2.43,产生的soot颗粒物中非黑碳物质(nonrefractory particulate matter,NR-PM)的质量占比(RBC)从0.07升高至1.03,soot颗粒物和BC核的形状因子越低,表明soot结构更紧凑,同时BC核的形变更为显著,并且少量非黑碳物质(NR-PM)包裹即可导致BC核的明显形变.受透镜效应的影响,黑碳的光吸收增强与RBC呈正相关,当RBC从0.07增加至1.03时,相应光吸收增强从1.05增加至1.52(781 nm下);此外,棕色碳(BrC)对405 nm和532 nm下的吸光增强也有贡献,其贡献率随着RBC的增加而增大.同时,soot自身的形态对黑碳光吸收增强也存在影响,结构越紧实的soot,其黑碳光吸收增强越明显,并且越接近核-壳模型下的理论计算值.本研究表明,黑碳的形变对于其光吸收增强的影响不容忽视.
  • 加载中
  • [1] BUSECK P R, ADACHI K, GELENCSéR A, et al. Are black carbon and soot the same[J]. Atmospheric Chemistry & Physics, 2012,12(9):24821-24846.
    [2] 肖思晗,于兴娜,朱彬,等.南京北郊黑碳气溶胶污染特征及影响因素分析[J].环境科学,2016,37(9):3280-3289.

    XIAO S H, YU X N, ZHU B, et al. Characteristics of black carbon aerosol and influencing factors in northern suburbs of Nanjing[J]. Environmental Science, 2016,37(9):3280-3289(in Chinese).

    [3] 葛茂发,佟胜睿. 大气化学动力学[M]. 北京:科学出版社,2016. GE M F, TONG S R. Atmospheric Chemistry Kinetics[M]. Beijing:Science Press, 2016(in Chinese).
    [4] CHOW J C, WATSON J G, PRITCHETT L C, et al. The DRI thermal/optical reflectance carbon analysis system:Description, evaluation and applications in US air quality studies[J]. Atmospheric Environment, 1993, 27(8):1185-1201.
    [5] BIRCH M E, CARY R A. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust[J]. Aerosol Science & Technology, 1996,25(3):221-241.
    [6] HANSEN A D A, NOVAKOV T. Real-time measurement of aerosol black carbon during the carbonaceous species methods comparison study[J]. Aerosol Science & Technology, 1990,12(1):194-199.
    [7] CHEN Y J, ZHI G R, FENG Y L, et al. Measurements of black and organic carbon emission factors for household coal combustion in China:Implication for emission reduction[J]. Environmental Science & Technology, 2009, 43:9495-9500.
    [8] RAMANATHAN V, CARMICHAEL G. Global and regional climate changes due to black carbon[J]. Nature Geoscience, 2008,1(4):221-227.
    [9] BOND T C, DOHERTY S J, FAHEY D W, et al. Bounding the role of black carbon in the climate system:A scientific assessment[J]. Journal of Geophysical Research Atmospheres, 2013,118(11):5380-5552.
    [10] RAMANATHAN V, CRUTZEN P J, KIEHL J T, et al. Aerosols, climate, and the hydrological cycle[J]. Science, 2011, 294(5549):2119-2126.
    [11] MENON S, HANSEN J, NAZARENKO L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297(5590):2250-2253.
    [12] LIOUSSE C, CACHIER H, JENNINGS S G. Optical and thermal measurement of black carbon aerosol content in different environments:Variation of the specific attenuation cross-section, sigma (σ)[J]. Atmospheric Environment, 1993, 27(8):1203-1211.
    [13] MARTINS J V, ARTAXO P, LIOUSSE C, et al. Effects of black carbon content, particle size and mixing on light absorption byaerosols from biomass burning in brazil[J]. Journal of Geophysical Atmospheres, 1998, 103(103):32041-32050.
    [14] FULLER K A, MALM W C, KREIDENWEIS S M. Effects of mixing on extinction by carbonaceous particles[J]. Journal of Geophysical Research, 1999,104(D13):15941-15954.
    [15] SHAMJAD P M, TRIPATHI S N, AGGARWAL S G, et al. Comparison of experimental and modeled absorption enhancement by black carbon (BC) cored polydisperse aerosols under hygroscopic conditions[J]. Environmental Science & Technology, 2012, 46(15):8082-8089.
    [16] ZHANG R, KHALIZOV A F, PAGELS J, et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(30):10291-10296.
    [17] QIU C, KHALIZOV A F, ZHANG R. Soot aging from OH-initiated oxidation of toluene[J]. Environmental Science & Technology, 2012,46(17):9454-9472.
    [18] BUENO P A, HAVEY D K, MULHOLLAND G W, et al. Photoacoustic measurement of amplification of the absorption cross section for coated soot aerosols[J]. Aerosol Science & Technology, 2011,45(10):1217-1230.
    [19] YOU R, RADNEY J G, ZACHARIAH M R, et al. Measured wavelength-dependent absorption enhancement of internally mixed black carbon with absorbing and non-absorbing materials[J]. Environmental Science & Technology, 2016,50(15):7982-7990.
    [20] GUO S, HU M, LIN Y, et al. OH-initiated oxidation of m-xylene on black carbon aging[J]. Environmental Science & Technology, 2016,50(16):8605-8612.
    [21] SHANG L, ALLISON C A, KYLE G, et al. Enhanced light absorption by mixed source black and brown carbon particles in UK winter[J]. Nature Communications, 2015, 6:8435.
    [22] CAPPA C D, ONASCH T B, MASSOLI P, et al. Radiative absorption enhancements due to the mixing state of atmospheric black carbon[J]. Science, 2012, 337(6098):1078-1081.
    [23] THAMBAN N M, TRIPATHTHI S N, MOOSAKUTTY S P, et al. Internally mixed black carbon in the Indo-Gangetic Plain and its effect on absorption enhancement[J]. Atmospheric Reasearch, 2017, 197:211-223.
    [24] PENG J F, HU M, GUO S, et al. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments[J]. Proc Natl Acad Sci USA, 2016, 113(16):4266-4271.
    [25] 范晓龙,陈敏东,KHALIZOV A F, 等.基于三甘醇附着对黑碳气溶胶形态结构变化的模拟[J]. 环境化学,2017,36(4):730-737.

    FAN X L, CHEN M D, KHALIZOV A F, et al. Effects of tri-ethylene glycol coating at the morphology of soot aerosol[J]. Environmental Chemistry, 2017,36(4):730-737(in Chinese).

    [26] WAGNER H G. Soot formation in combustion[J]. Symposium (International) on Combustion,1979,17(1):3-19.
    [27] UEDA S, NAKAYAMA T, TAKETANI F, et al. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan[J]. Atmospheric Chemistry Physics, 2016, 16(4):2525-2541.
    [28] NAKAYAMA T, IKEDA Y, SAWADA Y, et al. Properties of light-absorbing aerosols in the Nagoya urban area, Japan, in August 2011 and January 2012:Contributions of brown carbon and lensing effect[J]. Journal of Geophysical Research:Atmospheres,2014,119(22):12721-12739.
    [29] ARNOTT W P, MOOSMULLER H, ROGERS, C F, et al. Photoacoustic spectrometer for measuring light absorption by aerosol:instrument description[J]. Atmospheric Environment,1999,33(16):2845-2852.
    [30] DECARLO P F, SLOWIK J G, WORSNOP D R, et al. Particle morphology and density characterization by combined mobility and areodynamic diameter measurements[J]. Aerosol Science & Technology, 2004,38(12):1185-1205.
    [31] GHAZI R, TJONG H, THOMSON K A, et al. Mass, mobility, volatility, and morphology of soot particles generated by mckenna and inverted burner[J]. Aerosol Science & Technology, 2013,47(4):395-405.
    [32] PARK K, KITTELSON D B, ZACHARIAH M R, et al. Measurement of inherent material density of nanoparticle agglomerates[J]. Journal of Nanoparticle Research. 2004, 6(2):267-272.
    [33] KHALIZOV A F, XUE H, WANG L, et al. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid[J]. Journal of Physical Chemistry A. 2009, 113(6):1066-1074.
    [34] SLOWIK J G, CROSS E S, HAN J H, et al. Measurements of morphology changes of fractal soot particles using coating and denuding experiments:implications for optical absorption and atmospheric lifetime[J]. Aerosol Science & Technology. 2007, 41(8):734-750.
    [35] XUE H, KHALIZOV A F, WANG L, et al. Effects of coating of dicarboxylic acids on the mass-mobility relationship of soot particles[J]. Environmental Science & Technology. 2009, 43(8):2787-2792.
    [36] SAATHOFF H, NAUMANN K H, SCHNAITER M, et al. Coating of soot and (NH4)2SO4 particles by ozonolysis products of α-pinene[J]. Journal of Aerosol Science. 2003, 34(10):1297-1321.
    [37] KHALIZOV A F, LIN Y, QIU C, et al. Role of OH-initiated oxidation of isoprene in aging of combustion soot[J]. Environmental Science & Technology. 2013, 47(5):2254-2263.
    [38] KAUFMAN Y J, GITELSON A, KARNIELI A, et al. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements[J]. Journal of Grophysical Research, 1994, 99(D5):10341-10356.
    [39] COSTABILE F, BARNABA F, ANGELINI F, et al. Identification of key aerosol populations through their size and composition resolved spectral scattering and absorption[J]. Atmospheric Chemistry & Physics, 2013, 13(5):2455-2470.
    [40] RUSSELL P B, BERGSTROM R W, SHINOZUKA Y, et al. Absorption angstrom exponent in AERONET and related data as an indicator of aerosol composition[J]. Atmospheric Chemistry & Physics, 2010, 10(3):1155-1169.
    [41] LACK D A, CAPPA C D. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon[J]. Atmospheric Chemistry & Physics, 2010, 10(9):4207-4220.
    [42] BOND T C. Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion[J]. Geophysical Research Letters, 2012, 28(28):4075-4078.
    [43] 闫才青,郑玫,张远航. 大气棕色碳的研究进展与方向[J]. 环境科学,2014, 35(11):4404-4414.

    YAN C Q, ZHENG M, ZHANG Y H. Research progress and direction of atmospheric brown carbon[J]. Environmental Science, 2014,35(11):4404-4414(in Chinese).

    [44] HECOBIAN A, ZHANG X, ZHENG M, et al. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States[J]. Atmospheric Chemistry & Physics, 2010, 10(13):5965-5977.
    [45] BOND T C, HABIB G, BERGSTROM R W. Limitations in the enhancement of visible light absorption due to mixing state[J]. Journal of Geophysical Research, 2006, 111(D20):D20211.
  • 加载中
计量
  • 文章访问数:  1350
  • HTML全文浏览数:  1350
  • PDF下载数:  31
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-27

不同燃料当量比条件下烟炱(soot)形态及光吸收增强效应

    通讯作者: 马嫣, E-mail: my_nj@163.com
  • 1. 南京信息工程大学环境科学与工程学院, 南京, 210044;
  • 2. 江苏省大气环境监测与污染控制高技术研究重点实验室, 南京, 210044;
  • 3. 聚光科技股份有限公司, 杭州, 310052
基金项目:

国家重点研发计划(2016YFC0202402)和国家自然科学基金(41675126,41730106)资助.

摘要: 借助烟炱(soot)燃烧炉、扫描电迁移率粒径谱仪(SMPS)、气溶胶质量分析仪(APM)、三波段光声黑碳仪(PASS-3)探究不同燃料当量比(φ)条件下soot形态及光吸收增强效应.结果显示,随着燃料当量比(φ)从1.98升高至2.43,产生的soot颗粒物中非黑碳物质(nonrefractory particulate matter,NR-PM)的质量占比(RBC)从0.07升高至1.03,soot颗粒物和BC核的形状因子越低,表明soot结构更紧凑,同时BC核的形变更为显著,并且少量非黑碳物质(NR-PM)包裹即可导致BC核的明显形变.受透镜效应的影响,黑碳的光吸收增强与RBC呈正相关,当RBC从0.07增加至1.03时,相应光吸收增强从1.05增加至1.52(781 nm下);此外,棕色碳(BrC)对405 nm和532 nm下的吸光增强也有贡献,其贡献率随着RBC的增加而增大.同时,soot自身的形态对黑碳光吸收增强也存在影响,结构越紧实的soot,其黑碳光吸收增强越明显,并且越接近核-壳模型下的理论计算值.本研究表明,黑碳的形变对于其光吸收增强的影响不容忽视.

English Abstract

参考文献 (45)

目录

/

返回文章
返回