大气主要矿物颗粒/金黄色葡萄球菌模拟复合体特征分析

唐洁, 赵玉连, 代群威, 董发勤, 黄云碧, 王岩. 大气主要矿物颗粒/金黄色葡萄球菌模拟复合体特征分析[J]. 环境化学, 2019, (10): 2266-2273. doi: 10.7524/j.issn.0254-6108.2018112705
引用本文: 唐洁, 赵玉连, 代群威, 董发勤, 黄云碧, 王岩. 大气主要矿物颗粒/金黄色葡萄球菌模拟复合体特征分析[J]. 环境化学, 2019, (10): 2266-2273. doi: 10.7524/j.issn.0254-6108.2018112705
TANG Jie, ZHAO Yulian, DAI Qunwei, DONG Faqin, HUANG Yunbi, WANG Yan. Characteristic analysis of atmospheric major mineral particles/ staphylococcus aureus simulation complex[J]. Environmental Chemistry, 2019, (10): 2266-2273. doi: 10.7524/j.issn.0254-6108.2018112705
Citation: TANG Jie, ZHAO Yulian, DAI Qunwei, DONG Faqin, HUANG Yunbi, WANG Yan. Characteristic analysis of atmospheric major mineral particles/ staphylococcus aureus simulation complex[J]. Environmental Chemistry, 2019, (10): 2266-2273. doi: 10.7524/j.issn.0254-6108.2018112705

大气主要矿物颗粒/金黄色葡萄球菌模拟复合体特征分析

    通讯作者: 代群威, E-mail: qw_dai@163.com
  • 基金项目:

    国家自然科学基金(41130746)资助.

Characteristic analysis of atmospheric major mineral particles/ staphylococcus aureus simulation complex

    Corresponding author: DAI Qunwei, qw_dai@163.com
  • Fund Project: Supported by the National Natural Science Foundation of China (41130746).
  • 摘要: 大气环境污染日益复杂,大气中矿物颗粒与人体表面正常菌的复合体性质现在还不清楚,是否对人体具有危害还不得而知,大气主要矿物颗粒/金黄色葡萄球菌复合体特征的研究已经迫在眉睫.本文选取了3种矿物颗粒(石英、方解石、蒙脱石)和金黄色葡萄球菌,在成功制备矿物颗粒/金黄色葡萄球菌复合体的基础上,结合粒径分析仪、扫描电镜(SEM)、Zeta电位分析仪、傅里叶红外光谱仪(FTIR)等技术,对所制备的矿物/细菌复合体的粒径、形貌、表面电性及表面基团特征进行分析.粒径结果表明形成后的矿物/细菌复合体呈现粒径增大趋势;SEM结果表明,大量的金黄色葡萄球菌及其代谢产物粘附在矿物颗粒絮凝团表面;Zeta电位结果显示,复合体的电位值趋于矿物或者细菌的电位值;FTIR结果显示,矿物颗粒/金黄色葡萄球菌复合体中出现了来自金黄色葡萄球菌的特征峰,矿物颗粒其他基团出现了位移的现象.
  • 加载中
  • [1] WANG G H, HUANG L M, GAO S X, et al. Measurements of PM10 and PM2.5 in urban area of Nanjing, China and the assessment of pulmonary deposition of particle mass[J]. Chemosphere, 2002, 48(7):689-695.
    [2] INBO O, JIHO L, KANGMO A,et al. Association between particulate matter concentration and symptoms of atopic dermatitis in children living in an industrial urban area of South Korea[J]. Environmental Research, 2018, 160:462-468.
    [3] 杨继雷, 姚秀叶, 袁晓飞, 等. 张家口市大气颗粒物PM2.5、PM10浓度与慢性阻塞性肺疾病住院人次的关系研究[J]. 现代生物医学进展, 2018, 6:1167-1171,1200.

    YANG J L, YAO X Y, YUAN X F, et al. Relationship between concentration of airborne particulate matter PM2.5 and PM10 and number of inpatients with chronic obstructive pulmonary disease in Zhangjiakou City[J]. Progress in Modern Biomedicine, 2018, 6:1167-1171,1200(in Chinese).

    [4] 孙兆彬,安兴琴,崔甍甍,等. 北京地区颗粒物健康效应研究——沙尘天气、非沙尘天气下颗粒物(PM2.5、PM10)对心血管疾病入院人次的影响[J]. 中国环境科学, 2016, 36(8):2536-2544.

    SUN Z B, AN X Q, CUI M M, et al. The effect of PM2.5 and PM10 on cardiovascular and cerebrovascular diseases admission visitors in Beijing areas during dust weather, non-dust weather and haze pollution[J]. China Environmental Science, 2016, 36(8):2536-2544(in Chinese).

    [5] 白子娜, 段争. 石家庄市大气颗粒物(PM10/PM2.5)对下呼吸道感染住院影响的病例交叉研究[J]. 解放军医学杂志, 2016, 41(2):123-129.

    BAI Z L, DUAN Z. Atmospheric particulate matter and hospital admission due to lower respiratory tract infection:A case-cross study in Shijiazhuang, China[J]. Medical Journal of Chinese People's Liberation Army, 2016, 41(2):123-129(in Chinese).

    [6] 胡敏, 唐倩, 彭剑飞, 等. 我国大气颗粒物来源及特征分析[J]. 环境与可持续发展, 2011, 36(5):15-19.

    HU M, TANG Q, PENG J F, et al. Study on characterization and source apportionment of atmospheric particulate matter in China[J]. Environment and Sustainable Development, 2011, 36(5):15-19(in Chinese).

    [7] MANSOUR A, ALGHAMDI, MAGDY S, MARIA A R, et al. Microorganisms associated particulate matter:A preliminary study[J]. Science of the Total Environment,2014,479-480:109-116.
    [8] 清华研究组:北京雾霾藏1300种微生物[J]. 化学分析计量, 2014,23(2):53. Tsinghua research group:Beijing smog conceal 1300

    kinds of microorganism[J]. Chemical Analysis and Meterage, 2014,23(2):53.

    [9] HARA K, ZHANG D Z. Bacterial abundance and viability in long-range transported dust[J]. Atmospheric Environment,2012,47:20-25.
    [10] 董发勤, 代群威, 贺小春, 等. 可吸入矿物细颗粒物与微生物的相互作用[J]. 岩石矿物学杂质, 2009, 28(6):611-616.

    DONG F Q, DAI Q W, HE X C, et al. The interaction between inhalable mineral granules and microorganisms[J]. Acta Petrologica ET Mineralogica, 2009, 28(6):611-616(in Chinese).

    [11] MUELLER B. Experimental interactions between clay minerals and bacteria:A review[J]. Pedosphere, 2015, 25(6):799-810.
    [12] DU H H, CHEN W L, CAI P, et al. Cd(Ⅱ) sorption on montmorillonite-humic acid-bacteria composites[J]. Scientific Reports, 2016, 6:194-199.
    [13] HUANG Q Y, WU H Y, CAI P, et al. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles[J]. Scientific Reports, 2015, 5:16857-16869.
    [14] THEWES N, LOSKILL P, SPENGLER C, et al. A detailed guideline for the fabrication of single bacterial probes used for atomic force spectroscopy[J]. The European Physical Journal E, 2015, 38:140-149.
    [15] 张东晨, 王涛, 侯志翔, 等. 矿物表面性质生物调节机理的研究[J]. 洁净煤技术, 2013, 19(1):5-9

    ,23. ZHANG D C, WANG T, HOU Z,X, et al.Mechanism of microorganism regulating mineral surface properties[J]. Clean Coal Technology, 2013, 19(1):5-9, 23(in Chinese).

    [16] 陈红霞. 蒙脱石的吸附特征及其在环境治理中的应用[J]. 化工管理, 2018(30):138-139. CHEN H X. Adsorption characteristics of montmorillonite and its application in environmental treatment[J]. Chemical Enterprise Management, 2018

    (30):138-139(in Chinese).

    [17]
    [18] 乐毅全, 王土芬. 环境工程微生物[M]. 北京:化学工业出版社, 2011. LE Y Q, WANG T F. Environmental engineering microorganism[M]. Beijing:Chemical Industry Press,2011(in Chinese).
    [19] 赵玉连, 代群威, 董发勤, 等. 短小芽孢杆菌-蒙脱石相互作用实验研究[J]. 岩石矿物学杂志, 2015, 34(6):939-944.

    ZHAO Y L, DAI Q W, DONG F Q, et al. An experimental study of the interaction between Bacillus pumilus and montmorillonite[J]. Acta Petrologica ET Mineralogica, 2015, 34(6):939-944(in Chinese).

    [20] 荣兴民, 黄巧云, 陈雯莉, 等. 土壤矿物与微生物相互作用的机理及其环境效应[J]. 生态学报, 2008, 28(1):376-387.

    RONG X M, HUANG Q Y, CHEN W L, et al. Interaction mechanisms of soil minerals with microorganisms and their environmental significance[J]. Acta Ecologica Sinica, 2008, 28(1):376-387(in Chinese).

    [21] 王利明, 董发勤, 李圃, 等. 矿物粉尘与人体3种正常细菌相互作用的机制研究[J]. 国际检验医学杂志, 2006, 27(6):481-483.

    WANG L M, DONG F Q, LI P, et al. Study on the effect of mineral dusts on three kinds of natural normal bacterials in vitro[J]. International Journal of Laboratory Medicine, 2006, 27(6):481-483(in Chinese).

    [22] 向红, 周藜, 廖春, 等. 金黄色葡萄球菌及其引起的食物中毒的研究进展[J]. 中国食品卫生杂志, 2015, 27(2):196-199.

    XIANG H, ZHOU L, LIAO C, et al. Progress of staphylococcus aureus and food poisoning[J]. Chinese Journal of Food Hygiene, 2015, 27(2):196-199(in Chinese).

    [23] 高正旭,王晓玲,向华,等. 武汉市2014-2017年大气污染物分布特征及其潜在来源分析[J]. 环境科学学报, 2018, 38(11):4440-4453.

    GAO Z X, WANG X L,XAING H, et al. Variation characteristics and potential sources of air pollutants during 2014-2017 in Wuhan[J]. Acta Scientiae Circumstantiae, 2018, 38(11):4440-4453(in Chinese).

    [24] JUSTIN P, MILLER S, MARTIN S, JAMES J,et al. Seasonal contribution of mineral dust and other major components to particulate matter at two remote sites in Central Asia[J]. AtmospHeric Environment,2015,119:11-20.
    [25] BOGUSH A, STEGEMANN J A, WOOD I,et al. Element composition and mineralogical characterisation of air pollution control residue from UK energy-from-waste facilities[J]. Waste Management,2015,36:119-129.
    [26] 李帅. 矿物PM2.5对活体菌近膜物质作用及活性研究[D]. 绵阳:西南科技大学, 2016. LI S. Study on the effect and activity of mineral PM2.5 on living bacteria near membrane[D]. Mianyang:Southwest University of Science and Technology, 2016

    (in Chinese).

    [27] YANG X X, LI Y, LU A H,et al. Effect of Bacillus mucilaginosus D4B1 on the structure and soil-conservation-related properties of montmorillonite[J]. Applied Clay Science, 2016, 119:141-145.
    [28] MUELLER B. Experimental interactions between clay minerals and bacteria:A Review[J]. PedospHere, 2015, 25(6):799-810.
  • 加载中
计量
  • 文章访问数:  1265
  • HTML全文浏览数:  1265
  • PDF下载数:  24
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-27

大气主要矿物颗粒/金黄色葡萄球菌模拟复合体特征分析

    通讯作者: 代群威, E-mail: qw_dai@163.com
  • 1. 西南科技大学环境与资源学院, 绵阳, 621010;
  • 2. 固体废物处理与资源化省部共建教育重点实验室, 绵阳, 621010;
  • 3. 西南科技大学生命科学与工程学院, 绵阳, 621010
基金项目:

国家自然科学基金(41130746)资助.

摘要: 大气环境污染日益复杂,大气中矿物颗粒与人体表面正常菌的复合体性质现在还不清楚,是否对人体具有危害还不得而知,大气主要矿物颗粒/金黄色葡萄球菌复合体特征的研究已经迫在眉睫.本文选取了3种矿物颗粒(石英、方解石、蒙脱石)和金黄色葡萄球菌,在成功制备矿物颗粒/金黄色葡萄球菌复合体的基础上,结合粒径分析仪、扫描电镜(SEM)、Zeta电位分析仪、傅里叶红外光谱仪(FTIR)等技术,对所制备的矿物/细菌复合体的粒径、形貌、表面电性及表面基团特征进行分析.粒径结果表明形成后的矿物/细菌复合体呈现粒径增大趋势;SEM结果表明,大量的金黄色葡萄球菌及其代谢产物粘附在矿物颗粒絮凝团表面;Zeta电位结果显示,复合体的电位值趋于矿物或者细菌的电位值;FTIR结果显示,矿物颗粒/金黄色葡萄球菌复合体中出现了来自金黄色葡萄球菌的特征峰,矿物颗粒其他基团出现了位移的现象.

English Abstract

参考文献 (28)

目录

/

返回文章
返回