气液两相脉冲放电等离子体去除水中的全氟辛酸

胡雨晴, 宋文哲, 马春萌, 于建伟, 尚巍, 杨敏, 张昱. 气液两相脉冲放电等离子体去除水中的全氟辛酸[J]. 环境化学, 2019, (10): 2171-2179. doi: 10.7524/j.issn.0254-6108.2018112905
引用本文: 胡雨晴, 宋文哲, 马春萌, 于建伟, 尚巍, 杨敏, 张昱. 气液两相脉冲放电等离子体去除水中的全氟辛酸[J]. 环境化学, 2019, (10): 2171-2179. doi: 10.7524/j.issn.0254-6108.2018112905
HU Yuqing, SONG Wenzhe, MA Chunmeng, YU Jianwei, SHANG Wei, YANG Min, ZHANG Yu. Degradation of perfluorooctanoic in water using gas-liquid pulsed discharge plasma[J]. Environmental Chemistry, 2019, (10): 2171-2179. doi: 10.7524/j.issn.0254-6108.2018112905
Citation: HU Yuqing, SONG Wenzhe, MA Chunmeng, YU Jianwei, SHANG Wei, YANG Min, ZHANG Yu. Degradation of perfluorooctanoic in water using gas-liquid pulsed discharge plasma[J]. Environmental Chemistry, 2019, (10): 2171-2179. doi: 10.7524/j.issn.0254-6108.2018112905

气液两相脉冲放电等离子体去除水中的全氟辛酸

    通讯作者: 张昱, E-mail: zhangyu@rcees.ac.cn
  • 基金项目:

    水体污染控制与治理科技重大专项(2017ZX07106005)资助.

Degradation of perfluorooctanoic in water using gas-liquid pulsed discharge plasma

    Corresponding author: ZHANG Yu, zhangyu@rcees.ac.cn
  • Fund Project: Supported by Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07106005).
  • 摘要: 水中的全氟化合物具有很强的稳定性,常规方法难以去除.本文以全氟辛酸(PFOA)为目标,考察了一种基于液滴喷雾的气液两相脉冲放电等离子体反应器对PFOA去除的影响因素与去除效率,并探讨了去除机理.发现PFOA起始浓度为1.5 μg·L-1,等离子体反应器脉冲频率为1000 pps,电压为25 kV时PFOA的2 h去除率达40.5%.通过比较不同仪器参数下的去除效率发现,在相对低脉冲频率、低电压条件下PFOA去除效率更高,其表征去除效率的k/PD值达0.259 L·min-1·W-1k为去除速率常数,PD=输入功率/处理体积),高于同样浓度水平下已报道的层流发泡等离子体反应器最大k/PD值(0.025 L·min-1·W-1),表明液滴喷雾反应器具有低能耗的特点.在等离子体处理过程中检测到多种短链全氟羧酸(碳原子数为4—7)和氟离子的生成,2 h后产生的短链物质总和占初始PFOA的10%左右,表明PFOA的碳链在等离子体处理时发生断裂.加入电子抑制剂NaNO3后PFOA的去除明显被抑制,表明自由电子在初级反应过程中起较大作用.本研究对于水中PFOA的有效去除提供了一种有应用前景的技术选择.
  • 加载中
  • [1] 姚义鸣, 赵洋洋, 孙红文. 天津市大气中全氟化合物挥发性前体物的分布和季节变化[J]. 环境化学, 2016, 35(7):1329-1336.

    YAO Y M, ZHAO Y Y, SUN H W. The atmospheric distribution and seasonal variation of volatile perfluoroalkyl substance precursors in Tianjin.[J]. Environmental Chemistry, 2016, 35(7):1329-1336(in Chinese).

    [2] 刘力郡. 低温等离子体结合光催化降解全氟辛酸废水的研究[D]. 济南:山东大学, 2016. LIU L J. Study on low temperature plasma combined with photocatalytic degradation of perfluorooctanoic acid wastewater[D]. Jinan:Shandong University, 2016(in Chinese).
    [3] 任肖敏, 张连营, 郭良宏. 多溴联苯醚和全氟烷基酸的分子毒理机制研究[J]. 环境化学, 2014, 33(10):1662-1671.

    REN X M, ZHANG L Y, GUO L H. Molecular mechanism study on the toxicological effects of polybrominated diphenyl ethers and perfluoroalkyl acids[J]. Environmental Chemistry, 2014, 33(10):1662-1671(in Chinese).

    [4] 刘洋, 胡筱敏, 赵研, 等. 全氟化合物及其替代品的处理技术[J]. 环境化学, 2018, 37(8):1860-1868.

    LIU Y, HU X M, ZHAO Y, et al. Treatment techniques for perfluorinated compounds and their alternatives[J]. Environmental Chemistry, 2018, 37(8):1860-1868(in Chinese).

    [5] 祝淑敏, 高乃云, 马艳, 等. 全氟化合物的检测与去除研究进展[J]. 给水排水, 2012, 38(s1):118-123.

    ZHU S M, GAO N Y, MA Y, et al. Progress in detection and removal of perfluorinated compounds[J]. Water & Wastewater Engineering, 2012, 38(s1):118-123(in Chinese).

    [6] 王凯, 徐建, 柏杨巍, 等. 不同微生物处理工艺对全氟化合物的去除效果[J]. 环境科学研究, 2015, 28(1):110-116.

    WANG K, XU J, BAI Y W, et al. Removal efficiency of perfluorinated compounds with different microbial treatment techniques[J]. Research of Environmental Sciences, 2015, 28(1):110-116(in Chinese).

    [7] STRATTON G R, DAI F, BELLONA C L, et al. Plasma-based water treatment:Efficient transformation of perfluoroalkyl substances in prepared solutions and contaminated groundwater[J]. Environmental Science & Technology, 2017, 51(3):1643-1648.
    [8] YASUOKA K, SASAKI K, HAYASHI R. An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles[J]. Plasma Sources Science & Technology, 2011, 20(3):034009.
    [9] MATSUYA Y, TAKEUCHI N, YASUOKA K. Relationship between reaction rate of perfluorocarboxylic acid decomposition at a plasma-liquid interface and adsorbed amount[J]. Electrical Engineering in Japan, 2014, 188(2):1-8.
    [10] TAKEUCHI N, OISHI R, KITAGAWA Y, et al. Adsorption and efficient decomposition of perfluoro compounds at plasma-water interface[J]. IEEE Transactions on Plasma Science, 2011, 39(12):3358-3363.
    [11] 罗梅清, 卓琼芳, 许振成, 等. 全氟化合物处理技术的研究进展[J]. 环境科学与技术, 2015, 38(8):60-67.

    LUO M Q, ZHUO Q F, XU Z C, et al. Research progress in perfluorochemical treatment technology[J]. Environmental Science and Technology, 2015, 38(8):60-67(in Chinese).

    [12] 田富箱, 徐斌, 夏圣骥, 等. 饮用水中全氟化合物(PFCs)的控制研究进展[J]. 中国给水排水, 2010, 26(12):28-32.

    TIAN F X, XU B, XIA S J, et al. Advances in control of perfluorinated compounds (PFCs) in drinking water[J]. China Water & Wastewater, 2010, 26(12):28-32(in Chinese).

    [13] HORI H, HAYAKAWA E, EINAGA H, et al. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches.[J]. Environ.Sci.Technol, 2004, 38(22):6118-6124.
    [14] HORI H, NAGAOKA Y, MURAYAMA M, et al. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water.[J]. Environmental Science & Technology, 2008, 42(19):7438-7443.
    [15] TAKEUCHI N, KITAGAWA Y, KOSUGI A, et al. Plasma-liquid interfacial reaction in decomposition of perfluoro surfactants[J]. Journal of Physics D:Applied Physics, 2014, 47(4):045203
    [16] 屈广周, 李杰, 梁东丽, 等. 低温等离子体技术处理难降解有机废水的研究进展[J]. 化工进展, 2012, 31(3):662-670.

    QU G Z, LI J, LIANG D L, et al. Research progress in treatment of refractory organic wastewater by low temperature plasma technology[J]. Chemical Industry and Engineering Progress, 2012, 31(3):662-670(in Chinese).

    [17] MALIK M A. Water purification by plasmas:which reactors are most energy efficient?[J]. Plasma Chemistry & Plasma Processing, 2010, 30(1):21-31.
    [18] THAGARD S M, STRATTON G R, DAI F, et al. Plasma-based water treatment:Development of a general mechanistic model to estimate the treatability of different types of contaminants[J]. Journal of Physics D Applied Physics, 2017, 50(1):1-13.
    [19] HUANG F, CHEN L, WANG H, et al. Degradation of methyl orange by atmospheric DBD plasma:Analysis of the degradation effects and degradation path[J]. Journal of Electrostatics, 2012, 70(1):43-47.
    [20] LOCKE B R, SHIH K Y. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water[J]. Plasma Sources Science & Technology, 2011, 20(3):034006.
    [21] YANG Y, KIM H, STARIKOVSKIY A, et al. Note:An underwater multi-channel plasma array for water sterilization[J]. Review of Scientific Instruments, 2011, 82(9):096103.
    [22] KATAYAMA H, HONMA H, NAKAGAWARA N, et al. Decomposition of persistent organics in water using a gas-liquid two-phase flow plasma reactor[J]. IEEE Trans Plasma Sci, 2009, 37(6):897-904.
    [23] HUANG F, CHEN L, WANG H, et al. Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma[J]. Chemical Engineering Journal, 2010, 162(1):250-256.
    [24] 杨长河, 余秋梅, 刘建伟, 等. 介质阻挡放电处理含喹啉废水实验[J]. 高电压技术, 2010, 36(9):2316-2323.

    YANG C H, YU Q M, LIU J W, et al. Dielectric barrier discharge treatment of quinoline-containing wastewater[J]. High Voltage Engineering, 2010, 36(9):2316-2323(in Chinese).

    [25] MINAMITANI Y, SHOJI S, OHBA Y, et al. Decomposition of dye in water solution by pulsed power discharge in a water droplet spray[J]. IEEE Transactions on Plasma Science, 2008, 36(5):2586-2591.
    [26] NOSE T, HANAOKA Y, YOKOYAMA Y, et al. Decomposition of sodium acetate by pulsed discharge in water droplet spray[J]. IEEE Transactions on Plasma Science, 2013, 41(1):112-118.
    [27] MISRA N N, TIWARI B K, RAGHAVARAO K S M S, et al. Nonthermal plasma inactivation of food-borne pathogens[J]. Food Engineering Reviews, 2011, 3(3-4):159-170.
    [28] 彭辉. 全氟辛酸和全氟辛磺酸饮用水基准制定及来源解析[D]. 北京:北京大学, 2013. PENG H. Baseline development and source analysis of perfluorooctanoic acid and perfluorooctane sulfonate drinking water[D]. Beijing:Peking University, 2013(in Chinese).
    [29] GAI K, DONG Y J. Plasma induced degradation of azobenzene in water[J]. Journal of the Chinese Chemical Society, 2005, 52(2):273-276.
    [30] KE G, DONG Y J. Liquid phase auramine oxidation induced by plasma with glow discharge electrolysis[J]. Plasma Sources Science & Technology, 2005, 14(3):589-593.
    [31] JIANG B, ZHENG J T, QIU S, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236(2):348-368.
    [32] HORIKOSHI S, SATO S, ABE M, et al. A novel liquid plasma AOP device integrating microwaves and ultrasounds and its evaluation in defluorinating perfluorooctanoic acid in aqueous media[J]. Ultrasonics sonochemistry, 2011, 18(5):938-942.
    [33] 薛倩倩. 持久性有机污染物PFOS/PFOA在TiO2表面吸附行为的密度泛函研究[D]. 青岛:中国海洋大学, 2013. XUE Q Q. Density functional study on adsorption behavior of persistent organic pollutants PFOS/PFOA on TiO2 surface[D]. Qingdao:Ocean University of China, 2013(in Chinese).
    [34] SIMISTER E A, LEE E M, LU J R, et al. Adsorption of ammonium perfluorooctanoate and ammonium decanoate at the air/solution interface[J]. Journal of the Chemical Society Faraday Transactions, 1992, 88(20):3033-3041.
  • 加载中
计量
  • 文章访问数:  1315
  • HTML全文浏览数:  1315
  • PDF下载数:  63
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-29

气液两相脉冲放电等离子体去除水中的全氟辛酸

    通讯作者: 张昱, E-mail: zhangyu@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心, 环境水质学国家重点实验室, 北京, 100085;
  • 2. 中国科学院大学, 北京, 100049;
  • 3. 中国市政工程华北设计研究总院有限公司, 天津, 300074
基金项目:

水体污染控制与治理科技重大专项(2017ZX07106005)资助.

摘要: 水中的全氟化合物具有很强的稳定性,常规方法难以去除.本文以全氟辛酸(PFOA)为目标,考察了一种基于液滴喷雾的气液两相脉冲放电等离子体反应器对PFOA去除的影响因素与去除效率,并探讨了去除机理.发现PFOA起始浓度为1.5 μg·L-1,等离子体反应器脉冲频率为1000 pps,电压为25 kV时PFOA的2 h去除率达40.5%.通过比较不同仪器参数下的去除效率发现,在相对低脉冲频率、低电压条件下PFOA去除效率更高,其表征去除效率的k/PD值达0.259 L·min-1·W-1k为去除速率常数,PD=输入功率/处理体积),高于同样浓度水平下已报道的层流发泡等离子体反应器最大k/PD值(0.025 L·min-1·W-1),表明液滴喷雾反应器具有低能耗的特点.在等离子体处理过程中检测到多种短链全氟羧酸(碳原子数为4—7)和氟离子的生成,2 h后产生的短链物质总和占初始PFOA的10%左右,表明PFOA的碳链在等离子体处理时发生断裂.加入电子抑制剂NaNO3后PFOA的去除明显被抑制,表明自由电子在初级反应过程中起较大作用.本研究对于水中PFOA的有效去除提供了一种有应用前景的技术选择.

English Abstract

参考文献 (34)

目录

/

返回文章
返回