双金属Fe0-Cu0的合成及其催化过硫酸钠(PS)降解邻苯二甲酸二丁酯的研究

楼络琦, 陈佳乐, 张健, 姚昱喆, 繆祥睿, 李欢旋. 双金属Fe0-Cu0的合成及其催化过硫酸钠(PS)降解邻苯二甲酸二丁酯的研究[J]. 环境化学, 2019, (10): 2180-2186. doi: 10.7524/j.issn.0254-6108.2018112902
引用本文: 楼络琦, 陈佳乐, 张健, 姚昱喆, 繆祥睿, 李欢旋. 双金属Fe0-Cu0的合成及其催化过硫酸钠(PS)降解邻苯二甲酸二丁酯的研究[J]. 环境化学, 2019, (10): 2180-2186. doi: 10.7524/j.issn.0254-6108.2018112902
LOU Luoqi, CHEN Jiale, ZHANG Jian, YAO Yuzhe, MIAO Xiangrui, LI Huanxuan. Synthesis of bimetallic Fe0-Cu0 to catalyze persulfate for degradation of dibutyl phthalate[J]. Environmental Chemistry, 2019, (10): 2180-2186. doi: 10.7524/j.issn.0254-6108.2018112902
Citation: LOU Luoqi, CHEN Jiale, ZHANG Jian, YAO Yuzhe, MIAO Xiangrui, LI Huanxuan. Synthesis of bimetallic Fe0-Cu0 to catalyze persulfate for degradation of dibutyl phthalate[J]. Environmental Chemistry, 2019, (10): 2180-2186. doi: 10.7524/j.issn.0254-6108.2018112902

双金属Fe0-Cu0的合成及其催化过硫酸钠(PS)降解邻苯二甲酸二丁酯的研究

    通讯作者: 李欢旋, E-mail: hxlee@hdu.edu.cn
  • 基金项目:

    国家自然科学基金(51808177)资助.

Synthesis of bimetallic Fe0-Cu0 to catalyze persulfate for degradation of dibutyl phthalate

    Corresponding author: LI Huanxuan, hxlee@hdu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(51808177)
  • 摘要: 以铜金属有机骨架材料Cu3(BTC)2·12H2O(Cu-BTC)为前驱体,通过浸渍还原方法成功制备出粒径为20-30 nm的Fe0-Cu0双金属催化剂.为评估该双金属催化剂对过硫酸钠(PS)的催化活性,对邻苯二甲酸二丁酯(DBP)进行氧化降解研究.考察了Fe0/Cu0的摩尔比、PS浓度、催化剂用量及初始pH对DBP降解的影响.结果表明在Fe0/Cu0 <1.0时,DBP的降解去除率随着双金属催化剂Fe0/Cu0摩尔比的增加而增大.DBP的降解率随着PS和Fe0-Cu0双金属催化剂浓度的增加而增大,并在PS和Fe0-Cu0浓度分别为1.62 mmol·L-1和0.3 g·L-1时达到最佳去除效果.除pH值为7.0外,DBP的降解率随着初始pH值的增加而下降.
  • 加载中
  • [1] WU Q, LIU H, YE L S, et al. Biodegradation of Di-n-butyl phthalate esters by Bacillus sp. SASHJ under simulated shallow aquifer condition[J]. Int Biodeter Biodegr, 2013, 76:102-107.
    [2] YANG G P, ZHAO X K, SUN X J, et al. Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction[J].J Hazar Mater B, 2005, 126:112-118.
    [3] BAJT O, ZITA J, NOVOTNA P, et al. Photocatalytic degradation of dibutyl phthalate:Effect of catalyst immobilization[J]. J Sol Ener Eng, 2008, 130(4):51-55.
    [4] MAREGA M, GROB K, MORET S, et al. Phthalate analysis by gas chromatography-mass spectrometry:Blank problems related to the syringe needle[J]. J Chromatogr A, 2013, 1273:105-110.
    [5] ZHANG C, TIAN D, YI X, et al. Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China[J]. Chemosphere, 2019, 217:437-446.
    [6] 周文敏, 傅德黔, 孙宗光. 中国水中优先控制污染物黑名单的确定[J]. 环境科学研究, 1991, 4(6):9-12.

    ZhOU W M, FU D Q, SUN Z G. Determination of black list of China's priority pollutants in water[J]. Research of Environmental Science, 1991, 4(6):9-12(in Chinese).

    [7] ANIPSITAKIS G P, DIONYSION D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt, environ[J]. Sci Technol, 2003, 37:4790-4797.
    [8] LI H X, WAN J Q, MA Y W, et al. Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7[J]. Chem Eng J, 2014, 237:487-496.
    [9] LI H X, WAN J Q, MA Y W, et al. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron[J]. Sci Total Environ, 2016, 562:889-897.
    [10] DENG J, SHAO Y S, GAO N Y, et al. CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water[J]. J Hazar Mater, 2013, 262:836-844.
    [11] CAO J S, ZHANG W X,BROWN D G, et al. Oxidation oflindane with Fe(II)-activated sodium persulfate[J]. Environ Eng Sci, 2008, 25(2):221-228.
    [12] LI H X, WAN J Q, MA Y W, et al. Synthesis of novel core-shell Fe0@Fe3O4 as heterogeneous activator of persulfate for oxidation of dibutyl phthalate under neutral conditions[J]. Chem Eng J, 2016, 301:315-324.
    [13] FANG G D, DIONYSIOS D D, Al-ABED S R, et al. Superoxide radical driving the activation of persulfate by magnetite nanoparticles:Implications for the degradation of PCBs[J]. Appl.Catal.B-Environm, 2013, 129:325-332.
    [14] DO S H, KWON Y J, BANG S J, et al. Persulfate reactivity enhanced by Fe2O3-MnO and CaO-Fe2O3-MnO composite:Identification of composite and degradation of CCl4 at various levels of pH[J]. Chem Eng J, 2013, 221:72-80.
    [15] CHUI S Y, JONATHAN P H, WILLIAMS D, et al. A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283:1148-1150.
    [16] FELIPE S S, FERMANDA R L, LIDIA Y, et al. Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15[J], J Mater Res Technol, 2017, 6(2):178-183.
    [17] HUANG C C, LIEN S, LIEN H L. Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant[J], Chem Eng J, 2012, 203:95-100.
    [18] 徐阳, 基于湿式催化氧化技术的含铜金属-有机骨架催化剂研究[D]. 南京:东南大学,2016. XU Y. The study of copper metal-organic frameworks catalysts based on wet catalytic oxidation technology[D]. Nanjing:Southest University, 2016(in Chinese).
    [19] LI H X, WAN J Q, MA Y W, et al. New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions[J]. Chem Eng J, 2014, 250:137-147.
    [20] ZHOU P,ZHANG J Z,HANG Y L, et al. Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper[J]. J Hazar Mater, 2018, 344:1209-1219.
    [21] LIANG C, BRUELL C J, MARLEYH M C, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J], Chemosphere, 2004, 55:1213-1223.
  • 加载中
计量
  • 文章访问数:  1054
  • HTML全文浏览数:  1054
  • PDF下载数:  34
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-29

双金属Fe0-Cu0的合成及其催化过硫酸钠(PS)降解邻苯二甲酸二丁酯的研究

    通讯作者: 李欢旋, E-mail: hxlee@hdu.edu.cn
  • 杭州电子科技大学材料与环境学院, 杭州, 310008
基金项目:

国家自然科学基金(51808177)资助.

摘要: 以铜金属有机骨架材料Cu3(BTC)2·12H2O(Cu-BTC)为前驱体,通过浸渍还原方法成功制备出粒径为20-30 nm的Fe0-Cu0双金属催化剂.为评估该双金属催化剂对过硫酸钠(PS)的催化活性,对邻苯二甲酸二丁酯(DBP)进行氧化降解研究.考察了Fe0/Cu0的摩尔比、PS浓度、催化剂用量及初始pH对DBP降解的影响.结果表明在Fe0/Cu0 <1.0时,DBP的降解去除率随着双金属催化剂Fe0/Cu0摩尔比的增加而增大.DBP的降解率随着PS和Fe0-Cu0双金属催化剂浓度的增加而增大,并在PS和Fe0-Cu0浓度分别为1.62 mmol·L-1和0.3 g·L-1时达到最佳去除效果.除pH值为7.0外,DBP的降解率随着初始pH值的增加而下降.

English Abstract

参考文献 (21)

目录

/

返回文章
返回