室内环境中通过灰尘摄入和手-口接触带来的阻燃剂人体暴露风险

茹淑玲, 贾慧凝, 李鑫, 郑晓波, 解启来. 室内环境中通过灰尘摄入和手-口接触带来的阻燃剂人体暴露风险[J]. 环境化学, 2019, (10): 2247-2255. doi: 10.7524/j.issn.0254-6108.2018113002
引用本文: 茹淑玲, 贾慧凝, 李鑫, 郑晓波, 解启来. 室内环境中通过灰尘摄入和手-口接触带来的阻燃剂人体暴露风险[J]. 环境化学, 2019, (10): 2247-2255. doi: 10.7524/j.issn.0254-6108.2018113002
RU Shuling, JIA Huining, LI Xin, ZHENG Xiaobo, XIE Qilai. Human exposure to flame retardants via dust ingestion and hand-to-mouth contact in indoor environment[J]. Environmental Chemistry, 2019, (10): 2247-2255. doi: 10.7524/j.issn.0254-6108.2018113002
Citation: RU Shuling, JIA Huining, LI Xin, ZHENG Xiaobo, XIE Qilai. Human exposure to flame retardants via dust ingestion and hand-to-mouth contact in indoor environment[J]. Environmental Chemistry, 2019, (10): 2247-2255. doi: 10.7524/j.issn.0254-6108.2018113002

室内环境中通过灰尘摄入和手-口接触带来的阻燃剂人体暴露风险

    通讯作者: 解启来, E-mail: xieql@scau.edu.cn
  • 基金项目:

    广东省自然科学基金(2016A030310440)和广州市珠江新星项目(201806010185)资助.

Human exposure to flame retardants via dust ingestion and hand-to-mouth contact in indoor environment

    Corresponding author: XIE Qilai, xieql@scau.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of Guangdong, China (2016A030310440) and the Pearl River Nova Program of Guangzhou, China (201806010185).
  • 摘要: 本研究在广州市某高校随机选取17间大学宿舍进行灰尘取样,同时对居住于宿舍的32名在校学生进行手部擦拭取样.分析了室内灰尘和人手表面的阻燃剂(flame retardants,FRs)的含量水平和组成特征,并估算了灰尘摄入和手-口接触两种不同评估途径的日暴露量.多溴联苯醚(polybrominated diphenyl ethers,PBDEs)、磷酸酯阻燃剂(phosphorus flame retardants,PFRs)、德克隆(dechlorane plus,DP)、1,2-双(2,4,6-三溴苯氧基)乙烷(1,2-bis(2,4,6-tribromophenoxy)ethane,BTBPE)和十溴二苯乙烷(decabromodiphenyl ethane,DBDPE)在室内灰尘和手表面中均有检出.两种介质中的FRs组成相似,都主要包括BDE 209、DBDPE、PFRs,其中∑PFRs和DBDPE在两种介质中检出浓度最高,在灰尘中的中值浓度分别为1294 ng·g-1和1751 ng·g-1,在手表面的中值浓度分别为277 ng·m-2和41.7 ng·m-2.手-口接触摄入的FRs暴露量与灰尘摄入的FRs暴露量相当.在FRs的暴露风险评估中,手-口接触途径带来的FRs的暴露不容忽视.
  • 加载中
  • [1] REEMTSMA T, QUINTANA J B, RODIL R, et al. Organophosphorus flame retardants and plasticizers in water and air I.Occurrence and fate[J]. TrAC Trends in Analytical Chemistry, 2008, 27(9):727-737.
    [2] CAO Z G, XU F C, COVACI A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure[J]. Environmental Science & Technology, 2014, 48(15):8839-8846.
    [3] ALI N, EQANI S A, ISMAIL I M, et al. Brominated and organophosphate flame retardants in indoor dust of Jeddah,Kingdom of Saudi Arabia:Implications for human exposure[J]. Science of the Total Environment, 2016, 569-570:269-277.
    [4] ZHENG X B, QIAO L, COVACI A, et al. Brominated and phosphate flame retardants (FRs) in indoor dust from different microenvironments:Implications for human exposure via dust ingestion and dermal contact[J]. Chemosphere, 2017, 184:185-191.
    [5] MIZOUCHI S, ICHIBA M, TAKIGAMI H, et al. Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses[J]. Chemosphere, 2015, 123:17-25.
    [6] ALI N, DIRTU A C, EEDE N V D, et al. Occurence of alternative flame retardants in indoor dust from New Zealand:Indoor sources and human exposure assessment[J]. Chemosphere, 2012, 88(11):1276-1282.
    [7] 余乐洹, 蔡梓华, 余旭儿,等.红隼体内典型卤素有机污染物的含量及组织分配[J]. 环境化学,2018,37(4):644-651.

    YU L H, CAI Z H, YU X E, et al. Levels and tissue distribution of typical organohalogen pollutants in common kestrels(Falco tinnunculus)[J]. Environmental Chemistry, 2018, 37(4):644-651(in Chinese).

    [8] WATKINS D J, MCCLEAN M D, FRASER A J, et al. Exposure to PBDEs in the office environment:evaluating the relationships between dust, handwipes,and serum[J]. Environmental Health Perspectives, 2011, 119(9):1247-1252.
    [9] KOJIMA H, TAKEUCHI S, ITOH T, et al. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors[J]. Toxicology, 2013, 314(1):76-83.
    [10] STAPLETON H M, SHARMA S, GETZINGER G, et al. Novel and high volume use flame retardants in US couches reflective of the 2005 PentaBDE phase out[J]. Environmental Science & Technology, 2012, 46(24):13432-13439.
    [11] CEQUIER E, IONAS A C, COVACI A, et al. Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway[J]. Environmental Science & Technology, 2014, 48(12):6827-6835.
    [12] FROMME H, HILGER B, KOPP E, et al. Polybrominated diphenyl ethers (PBDEs),hexabromocyclododecane (HBCD) and "novel" brominated flame retardants in house dust in Germany[J]. Environment International, 2014, 64:61-68.
    [13] HE R W, LI Y Z, XIANG P, et al. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments:Bioaccessibility and risk assessment[J]. Chemosphere, 2016, 150:528-535.
    [14] WU C C, BAO L J, TAO S, et al. Dermal uptake from airborne organics as an important route of human exposure to e-waste combustion fumes[J]. Environmental Science & Technology, 2016, 50:6599-6605.
    [15] STAPLETON H M, KELLY S M, ALLEN J G, et al. Measurement of polybrominated diphenyl ethers on hand wipes:Estimating exposure from hand-to-mouth contact[J]. Environmental Science & Technology, 2008, 42(9):3329-3334.
    [16] LIU X T, YU G, CAO Z G, et al. Estimation of human exposure to halogenated flame retardants through dermal adsorption by skin wipe[J]. Chemosphere, 2017, 168:272-278.
    [17] ZHU N Z, LIU L Y, MA W L, et al. Polybrominated diphenyl ethers (PBDEs) in the indoor dust in China:Levels,spatial distribution and human exposure[J]. Ecotoxicology & Environmental Safety, 2015, 111:1-8.
    [18] WISE S A, POSTER D L, KUCKLICK J R, et al. Standard reference materials (SRMs) for determination of organic contaminants in environmental samples[J]. Analytical & Bioanalytical Chemistry, 2006, 386(4):1153-1190.
    [19] EEDE N V D, DIRTU A C, ALI N, et al. Multi-residue method for the determination of brominated and organophosphate flame retardants in indoor dust[J]. Talanta, 2012, 89(2):292-300.
    [20] FAN X H, KUBWABO C, RASMUSSEN P E, et al. Simultaneous determination of thirteen organophosphate esters in settled indoor house dust and a comparison between two sampling techniques[J]. Science of the Total Environment, 2014, 491-492:80-86.
    [21] ABDALLAH A E, COVACI A. Organophosphate flame retardants in indoor dust from egypt:Implications for human exposure[J]. Environmental Science & Technology, 2014, 48(9):4782-4789.
    [22] HE C, WANG X Y, THAI P, et al. Development and validation of a multi-residue method for the analysis of brominated and organophosphate flame retardants in indoor dust[J]. Talanta, 2016, 164:503-510.
    [23] HE C T, ZHENG J, QIAO L, et al. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure[J]. Chemosphere, 2015, 133:47-52.
    [24] 金漫彤, 滕丹丹, 郑艳霞,等.杭州城区室内灰尘中多溴联苯醚的含量及人体暴露水平[J]. 环境科学,2016,37(11):4341-4348.

    JIN M T, TENG D D, ZHENG Y X, et al. PBDEs levels in house dust and human exposure to PBDEs via dust ingestion in Hangzhou[J]. Environmental Science, 2016, 37(11):4341-4348(in Chinese).

    [25] CRISTALE J, HURTADO A, GÓMEZ-CANELA C, et al. Occurrence and sources of brominated and organophosphorus flame retardants in dust from different indoor environments in Barcelona, Spain[J]. Environmental Research, 2016, 149:66-76.
    [26] 王森, 袁琪, 韩瑞霞,等.环境介质中多溴联苯醚(PBDEs)分布特征的研究进展[J]. 环境化学,2017,36(12):2584-2599.

    WANG S, YUAN Q, HAN R X, et al. Distribution of polybrominated diphenyl ethers (PBDEs) in the environment:A review[J]. Environmental Chemistry, 2017, 36(12):2584-2599(in Chinese).

    [27] EEDE N V D, DIRTU A C, NEELS H, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust[J]. Environment International, 2011, 37(2):454-461.
    [28] KANAZAWA A, SAITO I, ARAKI A, et al. Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings[J]. Indoor Air, 2010, 20(1):72-84.
    [29] 徐亮, 胡琼璞, 刘静,等.上海市污泥中有机磷酸酯阻燃剂/增塑剂分布的初步研究[J]. 环境化学,2018,37(8):1699-1705.

    XU L, HU Q P, LIU J, et al. Occurrence and distribution of organophosphate esters flame retardants/plasticizers in the sludge from municipal wastewater treatment plants in Shanghai[J]. Environmental Chemistry, 2018, 37(8):1699-1705(in Chinese).

    [30] LIU X T, YU G, CAO Z, et al. Occurrence of organophosphorus flame retardants on skin wipes:Insight into human exposure from dermal absorption[J]. Environment International, 2017, 98:113-119.
    [31] HOFFMAN K, GARANTZIOTIS S, BIMNBAUM L S, et al. Monitoring indoor exposure to organophosphate flame retardants:Hand wipes and house dust[J]. Environmental Health Perspectives, 2015, 123(2):160-165.
    [32] TAN H L, CHEN D, PENG C F, et al. Novel and traditional organophosphate esters in house dust from south China:Association with hand wipes and exposure estimation[J]. Environmental Science & Technology, 2018, 52:11017-11026.
    [33] U.S. EPA. Exposure Factors Handbook (1997, Final Report)[M]. U.S. Environmental Protection Agency, Washington, DC(EPA/600/P-95/002F a-c), 1997.
    [34] XUE J P, ZARTARIAN V, MOYA J, et al. A meta-analysis of children's hand-to-mouth frequency data for estimating nondietary ingestion exposure[J]. Risk Analysis, 2007, 27(2):411-420.
    [35] ALI N, ALI L, MEHDI T, et al. Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan:Implication for human exposure via dust ingestion[J]. Environment International, 2013, 55:62-70.
  • 加载中
计量
  • 文章访问数:  1722
  • HTML全文浏览数:  1722
  • PDF下载数:  54
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-30

室内环境中通过灰尘摄入和手-口接触带来的阻燃剂人体暴露风险

    通讯作者: 解启来, E-mail: xieql@scau.edu.cn
  • 华南农业大学资源环境学院, 广州, 510640
基金项目:

广东省自然科学基金(2016A030310440)和广州市珠江新星项目(201806010185)资助.

摘要: 本研究在广州市某高校随机选取17间大学宿舍进行灰尘取样,同时对居住于宿舍的32名在校学生进行手部擦拭取样.分析了室内灰尘和人手表面的阻燃剂(flame retardants,FRs)的含量水平和组成特征,并估算了灰尘摄入和手-口接触两种不同评估途径的日暴露量.多溴联苯醚(polybrominated diphenyl ethers,PBDEs)、磷酸酯阻燃剂(phosphorus flame retardants,PFRs)、德克隆(dechlorane plus,DP)、1,2-双(2,4,6-三溴苯氧基)乙烷(1,2-bis(2,4,6-tribromophenoxy)ethane,BTBPE)和十溴二苯乙烷(decabromodiphenyl ethane,DBDPE)在室内灰尘和手表面中均有检出.两种介质中的FRs组成相似,都主要包括BDE 209、DBDPE、PFRs,其中∑PFRs和DBDPE在两种介质中检出浓度最高,在灰尘中的中值浓度分别为1294 ng·g-1和1751 ng·g-1,在手表面的中值浓度分别为277 ng·m-2和41.7 ng·m-2.手-口接触摄入的FRs暴露量与灰尘摄入的FRs暴露量相当.在FRs的暴露风险评估中,手-口接触途径带来的FRs的暴露不容忽视.

English Abstract

参考文献 (35)

目录

/

返回文章
返回