黄山景观区域氮、硫湿沉降来源与地球化学过程
Sources and geochemical processes of nitrogen and sulfur wet deposition in mount Huangshan landscape
-
摘要: 黄山是世界著名的地质公园,近年来该地区酸雨频率增加,威胁着景区的地质生态环境.本研究通过长期降水化学观测与氮、氧、硫同位素地球化学分析,探讨黄山景区氮、硫湿沉降来源与地球化学过程,以期揭示酸雨成因.结果表明,研究期间酸雨频率为62.5%.SO42-和NO3-为主要致酸离子.[SO42-]/[NO3-]当量比均值为1.7,主要受早期氮排放和移动源递增贡献影响.氮、氧、硫同位素组成和分异数据表明,降水中SO42-和NO3-主要来源为移动源(燃油)释放,工业源(燃煤)贡献次之,降水硝酸、硫酸的形成主要为燃油燃烧及其氧化物氧化过程.Ca2+和NH4+为酸雨的主要中和因子.我国逐渐增加的移动源化石燃料排放已经对黄山景区大气环境产生显著影响.Abstract: Mount Huangshan is a famous geological park in the world. Recently the acid rain has arisen with increased frequency in this area, threatening the geological and ecological environment. To reveal the cause of acid rain, the geochemical processes and sources of nitrate and sulfate wet deposition were discussed, based on precipitation chemistry characteristics together with the geochemical analysis of nitrogen, oxygen and sulfur isotopes. Results show that the acid rain frequency is 62.5% during the study period, wherein SO42- and NO3- are the major acidic anions. The average equivalent ratio of[SO42-]/[NO3-] is 1.7, suggesting the acidity of rainwater is greatly affected by NOx emissions and the increasing in vehicles. The data analyses of nitrogen, oxygen and sulfur isotopic composition and their fractionation indicate that SO42- and NO3- are mainly derived from mobile sources (burning oil), followed by industrial sources (burning coal). The fuel combustion and oxidation process of oxide are the main contributor in the appearance of nitric and sulfuric acid precipitation. Ca2+ and NH4+ are dominant neutralization factors for the acidity of rainwater. In summary, the increased fossil fuel emission from mobile sources has a significant impact on the atmospheric environment of Mount Huangshan Scenic Area.
-
Key words:
- Mount Huangshan /
- acid rain /
- nitrogen isotope /
- oxygen isotope /
- sulfur isotope
-
[1] 王文兴, 许鹏举. 中国大气降水化学研究进展[J]. 化学进展, 2009, 21(203):266-281. WANG W X, XU P J. Research progress in precipitation chemistry in China[J]. Progress in Chemistry, 2009, 21(203):266-281(in Chinese).
[2] ARSENE C, OLARIU R I, MIHALOPOULOS N. Chemical composition of rainwater in the northeastern Romania, Iasi region (2003-2006)[J]. Atmospheric Environment, 2007, 41(40):9452-9467. [3] BASAK B, ALAGHA O. The chemical composition of rainwater over buyukcekmece Lake, Istanbul[J]. Atmospheric Research, 2004, 71(4):275-288. [4] 龚立, 揭芳芳, 刘兰玉, 等. 重庆黔江区大气降水的化学特征及来源分析[J]. 环境监测管理与技术, 2015, 27(3):37-40. GONG L, JIE F F, LIU Y L, et al. Analysis on the chemical characteristics and origin of atmospheric precipitation in Qianjiang district of Chongqing city[J]. The Administration and Technique of Environmental Monitoring, 2015, 27(3):37-40(in Chinese).
[5] CAO Y Z, WANG S, GAN Z, et al. Chemical characteristics of wet precipitation at an urban site of Guangzhou, South China[J]. Atmospheric Research, 2009, 94(3):462-469. [6] JIN Z F, WANG Y, QIAN L J, et al. Combining chemical components with stable isotopes to determine nitrate sources of precipitation in Hangzhou and Huzhou, SE China[J]. Atmospheric Pollution Research, 2019, 10:386-394. [7] LIU X Y, XIAO H W, XIAO H Y, et al. Stable isotope analyses of precipitation nitrogen sources in Guiyang, southwestern China[J]. Environmental Pollution, 2017, 230:486-494. [8] WU Q, HAN G. Sulfur isotope and chemical composition of the rainwater at the Three Gorges Reservoir[J]. Atmospheric Research, 2015, 155:130-140. [9] 张海英. 黄山北部流域化学风化过程及钙来源的锶同位素示踪[D]. 马鞍山:安徽工业大学, 2015. ZHANG H Y. Identify chemical weathering processes and calcium sources in the northern Mount Huangshan watershed using strontium isotopes and major ion chemistry[D]. Ma'anshan:Anhui University of Technology, 2015(in Chinese). [10] 董俐香, 江用彬, 张海英, 等. 黄山景观流域溶解态稀土元素地球化学特征[J]. 中国稀土学报, 2017,35(2):283-293. DONG L X, JIANG Y B, ZHANG H Y, et al. Geochemistry of dissolved rare earth elements in watershed at northern Mount Huangshan landscape[J]. Journal of the Chinese Society of Rare Earths, 2017, 35(2):283-293(in Chinese).
[11] SHI C E, DENG X L, YANG Y J, et al. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China[J]. Advances in Atmospheric Sciences, 2014, 31(5):1157-1166. [12] 吴奕霄, 邱阳阳, 郭俊, 等. 不同海拔高度气溶胶粒子吸湿特征的观测研究——以黄山为例[J]. 长江流域资源与环境, 2018, 27(6):1361-1370. WU Y X, QIU Y Y, GUO J, et al. An observational study on the hygroscopic properties of aerosol particles at different altitudes——A case study in the Mt. Huangshan[J]. Resources and Environment in the Yangtze Basin, 2018, 27(6):1361-1370(in Chinese).
[13] 艾东升, 郑祥民, 周立旻. 等. 近2年上海市夏季降水地球化学特征研究[J]. 环境科学, 2010, 31(9):2002-2009. AI D S, ZHENG X M, ZHOU L M, et al. Geochemical character of precipitation in summer of Shanghai 2008-2009[J]. Environmental Science, 2010, 31(9):2002-2009(in Chinese).
[14] 余益军, 程钟, 李江, 等. 常州市2014年降水化学组成及来源浅析[J]. 环境化学, 2015,34(11):2136-2138. YU Y J, CHENG Z, LI J, et al. Analysis on the chemical composition and source of precipitation in Changzhou City in 2014[J]. Environmental Chemistry, 2015, 34(11):2136-2138(in Chinese).
[15] 肖红伟, 肖化云, 王燕丽. 贵阳大气降水化学特征及来源分析[J]. 中国环境科学, 2010, 30(12):1590-1596. XIAO H W, XIAO H Y, WANG Y L. Chemical characteristics and source apportionment of precipitation in Guiyang[J]. China Environmental Science, 2010, 30(12):1590-1596(in Chinese).
[16] 汤洁, 薛虎圣, 于晓岚, 等. 瓦里关山降水化学特征的初步分析[J]. 环境科学学报, 2000, 20(4):420-425. TANG J, XUE H S, YU X L, et al. The preliminary study on chemical characteristics of precipitation at Mt. Waliguan[J]. Acta Scientiae Circumstantiae, 2000, 20(4):420-425(in Chinese).
[17] 许新辉, 郜洪文. 中国南方酸雨的分布特征及其成因分析[J]. 四川环境, 2011, 30(4):135-139. XU X H, GAO H W. Analysis of the distribution and causes of acid rain in southern China[J]. Sichuan Environment, 2011, 30(4):135-139(in Chinese).
[18] 孙启斌, 肖红伟, 肖化云, 等. 南昌市大气降水化学特征及来源分析[J]. 环境科学研究, 2017, 30(12):1841-1848. SUN Q B, XIAO H W, XIAO H Y, et al. Chemical characteristics and source apportionment of atmospheric precipitation in Nanchang City[J]. Research of Environmental Sciences, 2017, 30(12):1841-1848(in Chinese).
[19] 石晓非, 牛贺文, 何元庆, 等. 丽江-玉龙雪山地区大气降水化学特征[J]. 环境化学, 2017, 36(5):994-1002. SHI X F, NIU H W, HE Y Q, et al. Characteristics of rainwater chemistry in Lijiang-Yulong Snow Mountain[J]. Environmental Chemistry, 2017, 36(5):994-1002(in Chinese).
[20] 王莹. 晋城市环境空气二氧化硫、氮氧化物与硫酸盐、硝酸盐相互关系的研究[D]. 太原:太原理工大学, 2012. WANG Y. Research on the relationship between sulfur dioxide, nitrogen oxide and sulfate, nitrate in ambient air in Jincheng City[D]. Taiyuan:Taiyuan University of Technology, 2012(in Chinese). [21] 洪业汤, 张鸿斌, 朱詠煊, 等. 中国大气降水的硫同位素组成特征[J]. 自然科学进展:国家重点实验室通讯, 1994, 4(6):741-745. HONG Y T, ZHANG H B, ZHU Y X, et al. Sulfur isotope composition characteristics of atmospheric precipitation in China[J]. Progress in Natural Science:National Key Laboratory Newsletter, 1994, 4(6):741-745(in Chinese).
[22] NESTLER A, BERGLUND M, ACCOE F, et al. Isotopes for improved management of nitrate pollution in aqueous resources:review of surface water field studies[J]. Environmental Science and Pollution Research, 2011, 18(4):519-533. [23] BOHLKE J K, ERICKSEN G E, REVESZ K. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A.[J]. Chemical Geology, 1997, 136(1-2):135-152. [24] ELLIOTT E M, YU Z J, COLE A S, et al. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing[J]. Science of the Total Environment, 2019, 662:393-403. [25] HEATON T H E. 15N/14N ratios of NOx from vehicle engines and coal-fired power stations[J]. Tellus B, 1990, 42(3):304-307. [26] FELIX J D, ELLIOTT E M. Isotopic composition of passively collected nitrogen dioxide emissions:Vehicle, soil and livestock source signatures[J]. Atmospheric Environment, 2014, 92:359-366. [27] 陈安泽, 浦庆余, 等. 黄山花岗岩地貌景观研究[M]. 北京:科学出版社, 2013. CHEN A Z, PU Q Y, et al. Landscapes of Huangshan granite[M]. Beijing:Science Press, 2013(in Chinese). [28] [29] KIM Y, LEE I, LIM C, et al. The origin and migration of the dissolved sulfate from precipitation in Seoul, Korea[J]. Environmental Pollution, 2018, 237:878-886. [30] FELIX J D, ELLIOTT E M, SHAW S L. Nitrogen isotopic composition of coal-fired power plant NOx:Influence of emission controls and implications for global emission inventories[J]. Environmental Science & Technology, 2012, 46(6):3528-3535. [31] HASTINGS M G, SIGMAN D M, LIPSCHULTZ F. Isotopic evidence for source changes of nitrate in rain at Bermuda[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D24):1-12. [32] FANG Y T, KOBA K, WANG X M, et al. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China[J]. Atmospheric Chemistry & Physics Discussions, 2011, 10(9):1313-1325. [33] YUE F J, LIU C Q, LI S L, et al. Analysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast China[J]. Journal of Hydrology, 2014, 519:329-339. [34] XING M, LIU W, WANG Z, et al. Relationship of nitrate isotopic character to population density in the Loess Plateau of Northwest China[J]. Applied Geochemistry, 2013, 35(4):110-119. [35] 王坚, 赵丽娟, 郁建栓. 厦门空气中NO2、SO2来源及污染物传输研究[J]. 中国西部科技, 2014, 13(3):7-9. WANG J, ZHAO L J, YU J S. Study on NO2 and SO2 sources and pollutant transport in xiamen air[J]. Science and Technology of West China, 2014, 13(3):7-9(in Chinese).
[36] 胡菲菲, 张良. 我国酸沉降地区硫源的硫同位素组成研究[J]. 地质学刊, 2013, 37(4):675-680. HU F F, ZHANG L. Study on sulfur isotopic composition of sulfur source in acid deposition regions in China[J]. Journal of Geology, 2013, 37(4):675-680(in Chinese).
[37] 张鸿斌, 胡霭琴, 卢承祖, 等. 华南地区酸沉降的硫同位素组成及其环境意义[J]. 中国环境科学, 2002, 22(2):165-169. ZHANG H B, HU A Q, LU C Z, et al. Sulfur isotopic composition of acid deposition in South China Regions and its environmental significance[J]. China Environmental Science, 2002, 22(2):165-169(in Chinese).
[38] 张鸿斌, 陈毓蔚, 刘德平. 广州地区酸雨硫源的硫同位素示踪研究[J]. 地球化学, 1995, 24(S1):126-133. ZHANG H B, CHEN Y W, LIU D P. Study on sulfur source of acid rain using sulfur isotopic trace[J]. Geochimica, 1995, 24(S1):126-133(in Chinese).
[39] ZHANG M Y, WANG S J, MA G Q, et al. Sulfur isotopic composition and source identification of atmospheric environment in central Zhejiang, China. Science China Earth Sciences, 2010, 53(11):1717-1725. [40] WALTERS W W, MICHALSKI G. Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy, molecules,·OH, and H2O and its implications for isotope variations in atmospheric nitrate[J]. Geochimica Et Cosmochimica Acta, 2016, 191:89-101.
计量
- 文章访问数: 1027
- HTML全文浏览数: 1027
- PDF下载数: 34
- 施引文献: 0