我国近地层O3污染及其风险评估研究进展
Research progress on ground-level O3 pollution and its risk assessment in China
-
摘要:
近地层O3污染及其对作物生长和产量的影响已经引起人们的广泛关注.本文简要回顾了我国地表O3污染水平,重点介绍了O3对作物影响的评估指标和模型的发展及其在风险评估中的应用,深入综述了有关评估O3污染造成作物产量损失方面的工作.此外,对我国未来该领域的研究工作进行了展望,指出今后需要更加有力的控制O3前体物,尤其是VOC的排放.为了准确地评估O3的农业风险,未来还需要在郊区布置一些监测站点,同时在我国主要作物种植区建立当地的O3浓度/通量响应关系模型.另外,今后还需加强基于气孔O3通量指标进行区域尺度O3风险评估的研究工作.
Abstract:Ground-level ozone pollution and its effects on the growth and yield of crops have attracted increasing attention in recent years. In this article, we briefly review the level of ground-level ozone pollution in China, and introduce the development of indices and models for ozone risk assessment and their application. We then review the studies on assessing crop yield losses due to ground-level ozone exposure. Additionally, the direction of future research in this field is given. We suggest that strict control measures for ozone precursors should be implemented to reduce ozone pollution, especially VOC emissions. In order to accurately carry out ozone risk assessment for agricultural crops, more air quality monitoring stations should be established in the suburbs, and the local ozone concentration/flux response relationship model should also be established in China's major crop-growing areas. Finally, it is necessary to carry out further studies on the risk assessment at the regional scale based on the stomatal ozone flux index.
-
Key words:
- ozone /
- crop /
- risk assessment /
- research progress
-
[1] VINGARZAN R. A review of surface ozone background levels and trends[J]. Atmospheric Environment, 2004, 38(21):3431-3442. [2] SITCH S, COX P, COLLINS W, et al. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink[J]. Nature, 2007, 448(7155):791-794. [3] LATIF M T, HUEY L S, JUNENG L. Variations of surface ozone concentration across the Klang Valley, Malaysia[J]. Atmospheric Environment, 2012, 61:434-445. [4] PU X, WANG T J, HUANG X, et al. Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China[J]. Science of the Total Environment, 2017, 603-604:807-816. [5] ZHAO H, ZHENG Y F, LI T, et al. Temporal and spatial variation in, and population exposure to, summertime ground-level ozone in Beijing[J]. International Journal of Environmental Research and Public Health, 2018, 15:628(1-16). [6] WANG W N, CHENG T H, GU X F, et al. Assessing spatial and temporal patterns of observed ground-level ozone in China[J]. Scientific Reports, 2017, 7:3651(1-12). [7] TANG G, WANG Y, LI X, et al. Spatial-temporal variations of surface ozone and ozone control strategy for Northern China[J]. Atmospheric Chemistry and Physics, 2011, 11(9):26057-26109. [8] 王占山, 李云婷, 陈添, 等. 北京城区臭氧日变化特征及与前体物的相关性分析[J]. 中国环境科学,2014,34(12):3001-3008. WANG Z S, LI Y T, CHEN T, et al. Analysis on diurnal variation characteristics of ozone and correlations with its precursors in urban atmosphere of Beijing[J]. China Environmental Science, 2014, 34(12):3001-3008(in Chinese).
[9] CHEN L, YU B, CHEN Z, et al. Investigating the temporal and spatial variability of total ozone column in the Yangtze River Delta using satellite data:1978-2013[J]. Remote Sensing, 2014, 6(12):12527-12543. [10] JIN X, HOLLOWAY T. Spatial and temporal variability of ozone sensitivity over China observed from the ozone monitoring instrument[J]. Journal of Geophysical Research Atmospheres, 2015, 120:7229-7246. [11] FU Y, LIAO H. Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China:Impacts on tropospheric ozone and secondary organic aerosol[J]. Atmospheric Environment, 2012, 59:170-185. [12] HU J, CHEN J, YING Q, et al. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system[J]. Atmospheric Chemistry and Physics, 2016, 16:10333-10350. [13] WANG T, XUE L, BRIMBLECOMBE P, et al. Ozone pollution in China:A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 2017, 575:1582-1596. [14] PUSEDE S E, COHEN R C. On the observed response of ozone to NOx and VOC reactivity reductions in San Joaquin Valley California 1995-present[J]. Atmospheric Chemistry and Physics, 2012, 12:8323-8339. [15] 吴锴, 康平, 于雷, 等. 2015-2016年中国城市臭氧浓度时空变化规律研究[J]. 环境科学学报,2018,38(6):2179-2190. WU K, KANG P, YU L, et al. Pollution status and spatio-temporal variations of ozone in China during 2015-2016[J]. Acta Scientiae Circumstantiae, 2018, 38(6):2179-2190(in Chinese).
[16] LI Y, LAU A K H, FUNG J C H, et al. Importance of NOx control for peak ozone reduction in the Pearl River Delta region[J]. Journal of Geophysical Research Atmospheres, 2013, 118:9428-9443. [17] BORREGO C, MONTEIRO A, FERREIRA J, et al. Modelling the photochemical pollution over the metropolitan area of Porto Alegre, Brazil[J]. Atmospheric Environment, 2010, 44(3):370-380. [18] FUHRER J, BOOKER F. Ecological issues related to ozone:Agricultural issues[J]. Environment International, 2003, 29(2-3):141-154. [19] FARES S, VARGAS R, DETTO M, et al. Tropospheric ozone reduces carbon assimilation in trees:estimates from analysis of continuous flux measurements[J]. Global Change Biology, 2013, 19(8):2427-2443. [20] AINSWORTH E A, YENDREK C R, SITCH S, et al. The effects of tropospheric ozone on net primary productivity and implications for climate change[J]. Annual Review of Plant Biology, 2012, 63:637-661. [21] LOMBARDOZZI D, LEVIS S, BONAN G, et al. The influence of chronic ozone exposure on global carbon and water cycles[J]. Journal of Climate, 2015, 28(1):292-305. [22] FELZER B S, CRONIN T, REILLY J M, et al. Impacts of ozone on trees and crops[J]. External Geophysics, Climate and Environment (Climate), 2007, 339:784-798. [23] AVNERY S, MAUZERALL D L, LIU J F, et al. Global crop yield reductions due to surface ozone exposure:2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution[J]. Atmospheric Environment, 2011, 45(13):2297-2309. [24] 朱治林, 孙晓敏, 于贵瑞, 等.陆地生态系统臭氧通量观测和气孔吸收估算研究进展[J]. 生态学报,2014,34(21):6029-6038. ZHU Z L, SUN X M, YU G R, et al. A review of research on ozone flux observation and stomatal uptake estimation over terrestrial ecosystems[J]. Acta Ecologica Sinica, 2014, 34(21):6029-6038(in Chinese).
[25] MUSSELMAN R C, LEFOHN A S, MASSMAN W J, et al. A critical review and analysis of the use of exposure-and flux-based ozone indices for predicting vegetation effects[J]. Atmospheric Environment, 2006, 40(10):1869-1888. [26] PLEIJEL H, DANIELSSON H, EMBERSON L, et al. Ozone risk assessment for agricultural crops in Europe:Further development of stomatal flux and flux-response relationships for European wheat and potato[J]. Atmospheric Environment, 2007, 41(14):3022-3040. [27] LI K, JACOB D J, LIAO H, et al. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J]. PNAS, 2019, 116(2):422-427. [28] WANG T, WEI X L, DING A J, et al. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007[J]. Atmospheric Chemistry & Physics, 2009, 9:6217-6227. [29] TANG X Y, LI J L, DONG Z X, et al. Photochemical pollution in Lanzhou, China-A case study[J]. Journal of Environmental Sciences, 1989, 1:31-37. [30] KOK G L, LIND J A, FANG M. An airborne study of air quality around the Hong Kong Territory[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D15):19043-19057. [31] SHAO M, TANG X Y, ZHANG Y H, et al. City clusters in China:air and surface water pollution[J]. Frontiers in Ecology & the Environment, 2006, 4(7):353-361. [32] WANG T, POON C N, KWOK Y H, et al. Characterizing the temporal variability and emission patterns of pollution plumes in the Pearl River Delta of China[J]. Atmospheric Environment, 2003, 37(25):3539-3550. [33] ZHANG Y H, SU H, ZHONG L J, et al. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign[J]. Atmospheric Environment, 2008, 42(25):6203-6218. [34] WANG T, DING A J, GAO J, et al. Strong ozone production in urban plumes from Beijing, China[J]. Geophysical Research Letters, 2006, 33:L21806. [35] WANG T, NIE W, GAO J, et al. Air quality during the 2008 Beijing Olympics:Secondary pollutants and regional impact[J]. Atmospheric Chemistry & Physics, 2010, 10:7603-7615. [36] ZHANG J, WANG T, CHAMEIDES W L, et al. Ozone production and hydrocarbon reactivity in Hong Kong, Southern China[J]. Atmospheric Chemistry & Physics, 2007, 7:557-573. [37] 程念亮, 李云婷, 张大伟, 等. 2004-2015年北京市清洁点臭氧浓度变化特征[J]. 环境科学,2016,37(8):2847-2854. CHENG N L, LI Y T, ZHANG D W, et al. Characteristics of ozone background concentration in Beijing from 2004 to 2015[J]. Environmental Science, 2016, 37(8):2847-2854(in Chinese).
[38] DING A J, WANG T, THOURET V, et al. Tropospheric ozone climatology over Beijing:analysis of aircraft data from the mozaic program[J]. Atmospheric Chemistry & Physics, 2008, 8:1-13. [39] XU X, LIN W, WANG T, et al. Long-term trend of surface ozone at a regional background station in eastern China 1991-2006:Enhanced variability[J]. Atmospheric Chemistry & Physics, 2008, 8:2595-2607. [40] ZHENG J, ZHONG L, WANG T, et al. Ground-level ozone in the Pearl River Delta region:Analysis of data from a recently established regional air quality monitoring network[J]. Atmospheric Environment, 2010, 44(6):814-823. [41] XUE L, WANG T, LOUIE P K K, et al. Increasing external effects negate local efforts to control ozone air pollution:A case study of Hong Kong and implications for other Chinese cities[J]. Environmental Science & Technology, 2014, 48(18):10769-10775. [42] LI J, LU K, LV W, et al. Fast increasing of surface ozone concentrations in Pearl River delta characterized by a regional air quality monitoring network during 2006-2011[J]. Journal of Environmental Sciences, 2014, 26(1):23-36. [43] TANG G, LI X, WANG Y, et al. Surface ozone trend details and interpretations in Beijing, 2001-2006[J]. Atmospheric Chemistry & Physics, 2009, 9:8813-8823. [44] MA Z, XU J, QUAN W, et al. Significant increase of surface ozone at a rural site, north of eastern China[J]. Atmospheric Chemistry & Physics, 2016, 16:3969-3977. [45] HECK W W, TAYLOR O C, ADAMS R, et al. Assessment of crop loss from ozone[J]. Environmental Science & Technology, 1982, 32(4):353-361. [46] 梁晶, 曾青, 朱建国, 等.植物对近地层高浓度臭氧响应的评价指标研究进展[J]. 中国生态农业学报,2010,18(2):440-445. LIANG J, ZENG Q, ZHU J G, et al. Review of indexes for evaluating plant response to elevated near-surface ozone concentration[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2):440-445(in Chinese).
[47] MUSSELMAN R C, MASSMAN W J. Ozone flux to vegetation and its relationship to plant response and ambient air quality standards[J]. Atmospheric Environment, 1998, 33(1):65-73. [48] FUHRER J, SKARBY L, ASHMORE M R. Critical levels for ozone effects on vegetation in Europe[J]. Environmental Pollution, 1997, 97(1-2):91-106. [49] LIU F, WANG X, ZHU Y. Assessing current and future ozone-induced yield reductions for rice and winter wheat in Chongqing and the Yangtze River Delta of China[J]. Environmental Pollution, 2009, 157(2):707-709. [50] KRUPA S V, NOSAL M, LEGGE A H. A numerical analysis of the combined open-top chamber data from the USA and Europe on ambient ozone and negative crop responses[J]. Environmental Pollution, 1998, 101(1):157-160. [51] GEROSA G, MARZUOLI R, DESOTGIU R. Visible leaf injury in young trees of Fagus sylvatica L. and Quercus robur L. in relation to ozone uptake and ozone exposure. An Open-Top Chambers experiment in South Alpine environmental conditions[J]. Environmental Pollution, 2008, 152(2):274-284. [52] KHAN M R, KHAN M W. Single and interactive effects of O3 and SO2 on tomato[J]. Environmental and Experimental Botany, 1994, 34(4):461-469. [53] BENARIE M. Exchange of trace gases between terrestrial ecosystems and the atmosphere[J]. Plant Growth Regulation, 1991, 10(4):383-384. [54] EMBERSON L D, ASHMORE M R, CAMBRIDGE H M, et al. Modelling stomatal ozone flux across Europe[J]. Environmental Pollution, 2000, 109(3):403-413. [55] 姚芳芳, 王效科, 陈展, 等.农田冬小麦生长和产量对臭氧动态暴露的响应[J]. 植物生态学报,2008,32(1):212-219. YAO F F, WANG X K, CHEN Z, et al. Response of photosynthesis, growth and yield of field-grown winter wheat to ozone exposure[J]. Journal of Plant Ecology, 2008, 32(1):212-219(in Chinese).
[56] DANIELSSON H, KARLSSON G P, KARLSSON P E, et al. Ozone uptake modelling and flux-response relationships-an assessment of ozone-induced yield loss in spring wheat[J]. Atmospheric Environment, 2003, 37(4):475-485. [57] HARMENS H, MILLS G, EMBERSON L D, et al. Implications of climate change for the stomatal flux of ozone:A case study for winter wheat[J]. Environmental Pollution, 2007, 146(3):763-770. [58] PICCHI V, IRITI M, QUARONI, et al. Climate variations and phenological stages modulate ozone damages in field-grown wheat. A three-year study with eight modern cultivars in Po Valley (Northern Italy)[J]. Agriculture Ecosystems & Environment, 2010, 135(4):310-317. [59] ZHANG W, FENG Z, WANG X, et al. Quantification of ozone exposure-and stomatal uptake-yield response relationships for soybean in Northeast China[J]. Science of The Total Environment, 2017, 599-600:710-720. [60] 佟磊, 王效科, 苏德·毕力格, 等. 水稻气孔臭氧通量拟合及通量与产量关系的比较分析[J]. 农业环境科学学报,2011,30(10):1930-1938. TONG L, WANG X K, Sudebilige, et al. Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of rice[J]. Journal of Agro-Environment Science, 2011, 30(10):1930-1938(in Chinese).
[61] WU R, ZHENG Y, HU C. Evaluation of the chronic effects of ozone on biomass loss of winter wheat based on ozone flux-response relationship with dynamical flux thresholds[J]. Atmospheric Environment, 2016, 142:93-103. [62] 佟磊, 冯宗炜, 苏德·毕力格, 等. 冬小麦气孔臭氧通量拟合及通量产量关系的比较分析[J]. 生态学报,2012,32(9):2890-2899. TONG L, FENG Z W, Sudebilige, et al. Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of winter wheat[J]. Acta Ecologica Sinica, 2012, 32(9):2890-2899(in Chinese).
[63] PLEIJEL H, DANIELSSON H, OJANPERA K, et al. Relationships between ozone exposure and yield loss in European wheat and potato-a comparison of concentration-and flux-based exposure indices[J]. Atmospheric Environment, 2004, 38(15):2259-2269. [64] KARLSSON P E, UDDLING J, SKARBY L, et al. Impact of ozone on the growth of birch (Betula pendula) saplings[J]. Atmospheric Environment, 2003, 124(3):485-495. [65] GOUMENAKI E, FERNANDEZ I G, PAPANIKOLAOU A, et al. Derivation of ozone flux-yield relationships for lettuce:A key horticultural crop[J]. Environmental Pollution, 2007, 146(3):699-706. [66] MILLS G, HAYES F, SIMPSON D, et al. Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990-2006) in relation to AOT40-and flux-based risk maps[J]. Global Change Biology, 2011, 17(1):592-613. [67] FENG Z, TANG H, UDDLING J, et al. A stomatal ozone flux-response relationship to assess ozone-induced yield loss of winter wheat in subtropical China[J]. Environmental Pollution, 2012, 164:16-23. [68] GONZALEZ-FERNANDEZ I, KAMINSKA A, DODMANI M, et al. Establishing ozone flux-response relationships for winter wheat:Analysis of uncertainties based on data for UK and Polish genotypes[J]. Atmospheric Environment, 2010, 44(5):621-630. [69] 佟磊, 王效科, 肖航, 等. 我国近地层臭氧污染对水稻和冬小麦产量的影响[J]. 生态毒理学报,2015,10(3):161-169. TONG L, WANG X K, XIAO H, et al. The effects of surface ozone on the yields of rice and winter wheat in China[J]. Asian Journal of Ecotoxicology, 2015, 10(3):161-169(in Chinese).
[70] FENG Z W, JIN M H, ZHANG F Z, et al. Effects of ground-level ozone (O3) pollution on the yields of rice and winter wheat in the Yangtze River Delta[J]. Journal of Environmental Sciences, 2003, 15(3):360-362. [71] WANG X, ZHANG Q, ZHENG F, et al. Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China[J]. Environmental Pollution, 2012, 171:118-125. [72] ZHU Z, SUN X, ZHAO F, et al. Ozone concentrations, flux and potential effect on yield during wheat growth in the Northwest-Shandong Plain of China[J]. Journal of Environmental Sciences, 2015, 34:1-9. [73] SHI G, YANG L, WANG Y, et al. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions[J]. Agriculture, Ecosystems & Environment, 2009, 131(3-4):178-184. [74] PANG J, KOBAYASHI K, ZHU J. Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone[J]. Agriculture, Ecosystems & Environment, 2009, 132(3-4):203-211. [75] FENG Z, HU E, WANG X, et al. Ground-level O3 pollution and its impacts on food crops in China:A review[J]. Environmental Pollution, 2015, 199:42-48. [76] 赵辉, 郑有飞, 魏莉, 等. 南京大气臭氧浓度的季节变化及其对主要作物影响的评估[J]. 环境科学,2018,39(7):3418-3425. ZHAO H, ZHENG Y F, WEI L, et al. Seasonal variation in surface ozone and its effect on the winter wheat and rice in Nanjing, China[J]. Environmental Science, 2018, 39(7):3418-3425(in Chinese).
[77] DINGENEN R V, DENTENER F J, RAES F, et al. The global impact of ozone on agricultural crop yields under current and future air quality legislation[J]. Atmospheric Environment, 2009, 43(3):604-618. [78] AVNERY S, MAUZERALL D, LIU J, et al. Global crop yield reductions due to surface ozone exposure:1. Year 2000 crop production losses and economic damage[J]. Atmospheric Environment, 2011, 45(13):2284-2296. [79] TANG H, TAKIGAWA M, LIU G, et al. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches[J]. Global Change Biology, 2013, 19(9):2739-2752. [80] 姚芳芳, 王效科, 逯非, 等. 臭氧对农业生态系统影响的综合评估:以长江三角洲为例[J]. 生态毒理学报,2008,3(2):185-195. YAO F F, WANG X K, LU F, et al. Assessing the impact of ambient ozone on crop ecosystem:a case study in Yangtze Delta, China[J]. Asian Journal of Ecotoxicology, 2008, 3(2):189-195(in Chinese).
[81] SINHA B, SANGWAN K S, MAURYA Y, et al. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements[J]. Atmospheric Chemistry & Physics, 2015, 15:9555-9576. [82] ZHAO H, ZHENG Y F, WU X Y. Assessment of yield and economic losses for wheat and rice due to ground-level O3 exposure in the Yangtze River Delta, China[J]. Atmospheric Environment, 2018, 191:241-248. [83] PAOLETTI E, MANNING W J. Toward a biologically significant and usable standard for ozone that will also protect plants[J]. Environmental Pollution, 2007, 150:85-95. [84] EMBERSON L, BUKER P, ASHMORE M. A comparison of North American and Asian exposure response data or ozone effects on crop yields[J]. Atmospheric Environment, 2009, 43(12):1945-1953. [85] AINSWORTH E A. Rice production in a changing climate:a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration[J]. Global Change Biology, 2008, 14:1642-1650. [86] FENG Z, KOBAYASHI K. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis[J]. Atmospheric Environment, 2009, 43:1510-1519. [87] MORGAN P B, AINSWORTH E A, LONG S P. How does elevated ozone impact soybean? A Meta-analysis of photosynthesis, growth and yield[J]. Plant Cell & Environment, 2003, 26:1317-1328. [88] AINSWORTH E A, DAVEY P A, BERNACCHI C J, et al. A meta-analysis of elevated[CO2] effects on soybean (Glycine max) physiology, growth and yield[J]. Global Change Biology, 2002, 8:695-709. [89] 冯兆忠, 小林和彦, 王效科, 等. 小麦产量形成对大气臭氧浓度升高响应的整合分析[J]. 科学通报,2008,53(24):3080-3085. FENG Z Z, KOBAYASHI K, WANG X K, et al. A meta-analysis of responses of wheat yield formation to elevated ozone concentration[J]. Chinese Science Bulletin, 2008, 53(24):3080-3085(in Chinese).
[90] 雷相东, 彭长辉, 田大伦, 等. 整合分析(Meta-analysis)方法及其在全球变化中的应用研究[J]. 科学通报,2006,51(22):2587-2597. LEI X D, PENG C H, TIAN D L, et al. Meta-analysis method and its application in global change[J]. Chinese Science Bulletin, 2006, 51(22):2587-2597(in Chinese).
[91] SICARD P, SERRA R, ROSSELLO P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012[J]. Environmental Research, 2016, 149:122-144.
计量
- 文章访问数: 1567
- HTML全文浏览数: 1567
- PDF下载数: 69
- 施引文献: 0