我国近地层O3污染及其风险评估研究进展

赵辉, 郑有飞, 李硕, 曹嘉晨. 我国近地层O3污染及其风险评估研究进展[J]. 环境化学, 2019, (12): 2709-2718. doi: 10.7524/j.issn.0254-6108.2019011701
引用本文: 赵辉, 郑有飞, 李硕, 曹嘉晨.

我国近地层O3污染及其风险评估研究进展

[J]. 环境化学, 2019, (12): 2709-2718. doi: 10.7524/j.issn.0254-6108.2019011701
ZHAO Hui, ZHENG Youfei, LI Shuo, CAO Jiachen. Research progress on ground-level O3 pollution and its risk assessment in China[J]. Environmental Chemistry, 2019, (12): 2709-2718. doi: 10.7524/j.issn.0254-6108.2019011701
Citation: ZHAO Hui, ZHENG Youfei, LI Shuo, CAO Jiachen.

Research progress on ground-level O3 pollution and its risk assessment in China

[J]. Environmental Chemistry, 2019, (12): 2709-2718. doi: 10.7524/j.issn.0254-6108.2019011701

我国近地层O3污染及其风险评估研究进展

    通讯作者: 郑有飞, E-mail: 20161102054@nuist.edu.cn
  • 基金项目:

    国家自然科学基金(41475108)和2017年度江苏省研究生科研创新项目(KYCX_0878)资助.

Research progress on ground-level O3 pollution and its risk assessment in China

    Corresponding author: ZHENG Youfei, 20161102054@nuist.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41475108)and Research Innovation Program for College Graduates of Jiangsu Province(KYCX_0878).
  • 摘要:

    近地层O3污染及其对作物生长和产量的影响已经引起人们的广泛关注.本文简要回顾了我国地表O3污染水平,重点介绍了O3对作物影响的评估指标和模型的发展及其在风险评估中的应用,深入综述了有关评估O3污染造成作物产量损失方面的工作.此外,对我国未来该领域的研究工作进行了展望,指出今后需要更加有力的控制O3前体物,尤其是VOC的排放.为了准确地评估O3的农业风险,未来还需要在郊区布置一些监测站点,同时在我国主要作物种植区建立当地的O3浓度/通量响应关系模型.另外,今后还需加强基于气孔O3通量指标进行区域尺度O3风险评估的研究工作.

  • 加载中
  • [1] VINGARZAN R. A review of surface ozone background levels and trends[J]. Atmospheric Environment, 2004, 38(21):3431-3442.
    [2] SITCH S, COX P, COLLINS W, et al. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink[J]. Nature, 2007, 448(7155):791-794.
    [3] LATIF M T, HUEY L S, JUNENG L. Variations of surface ozone concentration across the Klang Valley, Malaysia[J]. Atmospheric Environment, 2012, 61:434-445.
    [4] PU X, WANG T J, HUANG X, et al. Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China[J]. Science of the Total Environment, 2017, 603-604:807-816.
    [5] ZHAO H, ZHENG Y F, LI T, et al. Temporal and spatial variation in, and population exposure to, summertime ground-level ozone in Beijing[J]. International Journal of Environmental Research and Public Health, 2018, 15:628(1-16).
    [6] WANG W N, CHENG T H, GU X F, et al. Assessing spatial and temporal patterns of observed ground-level ozone in China[J]. Scientific Reports, 2017, 7:3651(1-12).
    [7] TANG G, WANG Y, LI X, et al. Spatial-temporal variations of surface ozone and ozone control strategy for Northern China[J]. Atmospheric Chemistry and Physics, 2011, 11(9):26057-26109.
    [8] 王占山, 李云婷, 陈添, 等. 北京城区臭氧日变化特征及与前体物的相关性分析[J]. 中国环境科学,2014,34(12):3001-3008.

    WANG Z S, LI Y T, CHEN T, et al. Analysis on diurnal variation characteristics of ozone and correlations with its precursors in urban atmosphere of Beijing[J]. China Environmental Science, 2014, 34(12):3001-3008(in Chinese).

    [9] CHEN L, YU B, CHEN Z, et al. Investigating the temporal and spatial variability of total ozone column in the Yangtze River Delta using satellite data:1978-2013[J]. Remote Sensing, 2014, 6(12):12527-12543.
    [10] JIN X, HOLLOWAY T. Spatial and temporal variability of ozone sensitivity over China observed from the ozone monitoring instrument[J]. Journal of Geophysical Research Atmospheres, 2015, 120:7229-7246.
    [11] FU Y, LIAO H. Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China:Impacts on tropospheric ozone and secondary organic aerosol[J]. Atmospheric Environment, 2012, 59:170-185.
    [12] HU J, CHEN J, YING Q, et al. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system[J]. Atmospheric Chemistry and Physics, 2016, 16:10333-10350.
    [13] WANG T, XUE L, BRIMBLECOMBE P, et al. Ozone pollution in China:A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 2017, 575:1582-1596.
    [14] PUSEDE S E, COHEN R C. On the observed response of ozone to NOx and VOC reactivity reductions in San Joaquin Valley California 1995-present[J]. Atmospheric Chemistry and Physics, 2012, 12:8323-8339.
    [15] 吴锴, 康平, 于雷, 等. 2015-2016年中国城市臭氧浓度时空变化规律研究[J]. 环境科学学报,2018,38(6):2179-2190.

    WU K, KANG P, YU L, et al. Pollution status and spatio-temporal variations of ozone in China during 2015-2016[J]. Acta Scientiae Circumstantiae, 2018, 38(6):2179-2190(in Chinese).

    [16] LI Y, LAU A K H, FUNG J C H, et al. Importance of NOx control for peak ozone reduction in the Pearl River Delta region[J]. Journal of Geophysical Research Atmospheres, 2013, 118:9428-9443.
    [17] BORREGO C, MONTEIRO A, FERREIRA J, et al. Modelling the photochemical pollution over the metropolitan area of Porto Alegre, Brazil[J]. Atmospheric Environment, 2010, 44(3):370-380.
    [18] FUHRER J, BOOKER F. Ecological issues related to ozone:Agricultural issues[J]. Environment International, 2003, 29(2-3):141-154.
    [19] FARES S, VARGAS R, DETTO M, et al. Tropospheric ozone reduces carbon assimilation in trees:estimates from analysis of continuous flux measurements[J]. Global Change Biology, 2013, 19(8):2427-2443.
    [20] AINSWORTH E A, YENDREK C R, SITCH S, et al. The effects of tropospheric ozone on net primary productivity and implications for climate change[J]. Annual Review of Plant Biology, 2012, 63:637-661.
    [21] LOMBARDOZZI D, LEVIS S, BONAN G, et al. The influence of chronic ozone exposure on global carbon and water cycles[J]. Journal of Climate, 2015, 28(1):292-305.
    [22] FELZER B S, CRONIN T, REILLY J M, et al. Impacts of ozone on trees and crops[J]. External Geophysics, Climate and Environment (Climate), 2007, 339:784-798.
    [23] AVNERY S, MAUZERALL D L, LIU J F, et al. Global crop yield reductions due to surface ozone exposure:2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution[J]. Atmospheric Environment, 2011, 45(13):2297-2309.
    [24] 朱治林, 孙晓敏, 于贵瑞, 等.陆地生态系统臭氧通量观测和气孔吸收估算研究进展[J]. 生态学报,2014,34(21):6029-6038.

    ZHU Z L, SUN X M, YU G R, et al. A review of research on ozone flux observation and stomatal uptake estimation over terrestrial ecosystems[J]. Acta Ecologica Sinica, 2014, 34(21):6029-6038(in Chinese).

    [25] MUSSELMAN R C, LEFOHN A S, MASSMAN W J, et al. A critical review and analysis of the use of exposure-and flux-based ozone indices for predicting vegetation effects[J]. Atmospheric Environment, 2006, 40(10):1869-1888.
    [26] PLEIJEL H, DANIELSSON H, EMBERSON L, et al. Ozone risk assessment for agricultural crops in Europe:Further development of stomatal flux and flux-response relationships for European wheat and potato[J]. Atmospheric Environment, 2007, 41(14):3022-3040.
    [27] LI K, JACOB D J, LIAO H, et al. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J]. PNAS, 2019, 116(2):422-427.
    [28] WANG T, WEI X L, DING A J, et al. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007[J]. Atmospheric Chemistry & Physics, 2009, 9:6217-6227.
    [29] TANG X Y, LI J L, DONG Z X, et al. Photochemical pollution in Lanzhou, China-A case study[J]. Journal of Environmental Sciences, 1989, 1:31-37.
    [30] KOK G L, LIND J A, FANG M. An airborne study of air quality around the Hong Kong Territory[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D15):19043-19057.
    [31] SHAO M, TANG X Y, ZHANG Y H, et al. City clusters in China:air and surface water pollution[J]. Frontiers in Ecology & the Environment, 2006, 4(7):353-361.
    [32] WANG T, POON C N, KWOK Y H, et al. Characterizing the temporal variability and emission patterns of pollution plumes in the Pearl River Delta of China[J]. Atmospheric Environment, 2003, 37(25):3539-3550.
    [33] ZHANG Y H, SU H, ZHONG L J, et al. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign[J]. Atmospheric Environment, 2008, 42(25):6203-6218.
    [34] WANG T, DING A J, GAO J, et al. Strong ozone production in urban plumes from Beijing, China[J]. Geophysical Research Letters, 2006, 33:L21806.
    [35] WANG T, NIE W, GAO J, et al. Air quality during the 2008 Beijing Olympics:Secondary pollutants and regional impact[J]. Atmospheric Chemistry & Physics, 2010, 10:7603-7615.
    [36] ZHANG J, WANG T, CHAMEIDES W L, et al. Ozone production and hydrocarbon reactivity in Hong Kong, Southern China[J]. Atmospheric Chemistry & Physics, 2007, 7:557-573.
    [37] 程念亮, 李云婷, 张大伟, 等. 2004-2015年北京市清洁点臭氧浓度变化特征[J]. 环境科学,2016,37(8):2847-2854.

    CHENG N L, LI Y T, ZHANG D W, et al. Characteristics of ozone background concentration in Beijing from 2004 to 2015[J]. Environmental Science, 2016, 37(8):2847-2854(in Chinese).

    [38] DING A J, WANG T, THOURET V, et al. Tropospheric ozone climatology over Beijing:analysis of aircraft data from the mozaic program[J]. Atmospheric Chemistry & Physics, 2008, 8:1-13.
    [39] XU X, LIN W, WANG T, et al. Long-term trend of surface ozone at a regional background station in eastern China 1991-2006:Enhanced variability[J]. Atmospheric Chemistry & Physics, 2008, 8:2595-2607.
    [40] ZHENG J, ZHONG L, WANG T, et al. Ground-level ozone in the Pearl River Delta region:Analysis of data from a recently established regional air quality monitoring network[J]. Atmospheric Environment, 2010, 44(6):814-823.
    [41] XUE L, WANG T, LOUIE P K K, et al. Increasing external effects negate local efforts to control ozone air pollution:A case study of Hong Kong and implications for other Chinese cities[J]. Environmental Science & Technology, 2014, 48(18):10769-10775.
    [42] LI J, LU K, LV W, et al. Fast increasing of surface ozone concentrations in Pearl River delta characterized by a regional air quality monitoring network during 2006-2011[J]. Journal of Environmental Sciences, 2014, 26(1):23-36.
    [43] TANG G, LI X, WANG Y, et al. Surface ozone trend details and interpretations in Beijing, 2001-2006[J]. Atmospheric Chemistry & Physics, 2009, 9:8813-8823.
    [44] MA Z, XU J, QUAN W, et al. Significant increase of surface ozone at a rural site, north of eastern China[J]. Atmospheric Chemistry & Physics, 2016, 16:3969-3977.
    [45] HECK W W, TAYLOR O C, ADAMS R, et al. Assessment of crop loss from ozone[J]. Environmental Science & Technology, 1982, 32(4):353-361.
    [46] 梁晶, 曾青, 朱建国, 等.植物对近地层高浓度臭氧响应的评价指标研究进展[J]. 中国生态农业学报,2010,18(2):440-445.

    LIANG J, ZENG Q, ZHU J G, et al. Review of indexes for evaluating plant response to elevated near-surface ozone concentration[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2):440-445(in Chinese).

    [47] MUSSELMAN R C, MASSMAN W J. Ozone flux to vegetation and its relationship to plant response and ambient air quality standards[J]. Atmospheric Environment, 1998, 33(1):65-73.
    [48] FUHRER J, SKARBY L, ASHMORE M R. Critical levels for ozone effects on vegetation in Europe[J]. Environmental Pollution, 1997, 97(1-2):91-106.
    [49] LIU F, WANG X, ZHU Y. Assessing current and future ozone-induced yield reductions for rice and winter wheat in Chongqing and the Yangtze River Delta of China[J]. Environmental Pollution, 2009, 157(2):707-709.
    [50] KRUPA S V, NOSAL M, LEGGE A H. A numerical analysis of the combined open-top chamber data from the USA and Europe on ambient ozone and negative crop responses[J]. Environmental Pollution, 1998, 101(1):157-160.
    [51] GEROSA G, MARZUOLI R, DESOTGIU R. Visible leaf injury in young trees of Fagus sylvatica L. and Quercus robur L. in relation to ozone uptake and ozone exposure. An Open-Top Chambers experiment in South Alpine environmental conditions[J]. Environmental Pollution, 2008, 152(2):274-284.
    [52] KHAN M R, KHAN M W. Single and interactive effects of O3 and SO2 on tomato[J]. Environmental and Experimental Botany, 1994, 34(4):461-469.
    [53] BENARIE M. Exchange of trace gases between terrestrial ecosystems and the atmosphere[J]. Plant Growth Regulation, 1991, 10(4):383-384.
    [54] EMBERSON L D, ASHMORE M R, CAMBRIDGE H M, et al. Modelling stomatal ozone flux across Europe[J]. Environmental Pollution, 2000, 109(3):403-413.
    [55] 姚芳芳, 王效科, 陈展, 等.农田冬小麦生长和产量对臭氧动态暴露的响应[J]. 植物生态学报,2008,32(1):212-219.

    YAO F F, WANG X K, CHEN Z, et al. Response of photosynthesis, growth and yield of field-grown winter wheat to ozone exposure[J]. Journal of Plant Ecology, 2008, 32(1):212-219(in Chinese).

    [56] DANIELSSON H, KARLSSON G P, KARLSSON P E, et al. Ozone uptake modelling and flux-response relationships-an assessment of ozone-induced yield loss in spring wheat[J]. Atmospheric Environment, 2003, 37(4):475-485.
    [57] HARMENS H, MILLS G, EMBERSON L D, et al. Implications of climate change for the stomatal flux of ozone:A case study for winter wheat[J]. Environmental Pollution, 2007, 146(3):763-770.
    [58] PICCHI V, IRITI M, QUARONI, et al. Climate variations and phenological stages modulate ozone damages in field-grown wheat. A three-year study with eight modern cultivars in Po Valley (Northern Italy)[J]. Agriculture Ecosystems & Environment, 2010, 135(4):310-317.
    [59] ZHANG W, FENG Z, WANG X, et al. Quantification of ozone exposure-and stomatal uptake-yield response relationships for soybean in Northeast China[J]. Science of The Total Environment, 2017, 599-600:710-720.
    [60] 佟磊, 王效科, 苏德·毕力格, 等. 水稻气孔臭氧通量拟合及通量与产量关系的比较分析[J]. 农业环境科学学报,2011,30(10):1930-1938.

    TONG L, WANG X K, Sudebilige, et al. Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of rice[J]. Journal of Agro-Environment Science, 2011, 30(10):1930-1938(in Chinese).

    [61] WU R, ZHENG Y, HU C. Evaluation of the chronic effects of ozone on biomass loss of winter wheat based on ozone flux-response relationship with dynamical flux thresholds[J]. Atmospheric Environment, 2016, 142:93-103.
    [62] 佟磊, 冯宗炜, 苏德·毕力格, 等. 冬小麦气孔臭氧通量拟合及通量产量关系的比较分析[J]. 生态学报,2012,32(9):2890-2899.

    TONG L, FENG Z W, Sudebilige, et al. Stomatal ozone uptake modeling and comparative analysis of flux-response relationships of winter wheat[J]. Acta Ecologica Sinica, 2012, 32(9):2890-2899(in Chinese).

    [63] PLEIJEL H, DANIELSSON H, OJANPERA K, et al. Relationships between ozone exposure and yield loss in European wheat and potato-a comparison of concentration-and flux-based exposure indices[J]. Atmospheric Environment, 2004, 38(15):2259-2269.
    [64] KARLSSON P E, UDDLING J, SKARBY L, et al. Impact of ozone on the growth of birch (Betula pendula) saplings[J]. Atmospheric Environment, 2003, 124(3):485-495.
    [65] GOUMENAKI E, FERNANDEZ I G, PAPANIKOLAOU A, et al. Derivation of ozone flux-yield relationships for lettuce:A key horticultural crop[J]. Environmental Pollution, 2007, 146(3):699-706.
    [66] MILLS G, HAYES F, SIMPSON D, et al. Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990-2006) in relation to AOT40-and flux-based risk maps[J]. Global Change Biology, 2011, 17(1):592-613.
    [67] FENG Z, TANG H, UDDLING J, et al. A stomatal ozone flux-response relationship to assess ozone-induced yield loss of winter wheat in subtropical China[J]. Environmental Pollution, 2012, 164:16-23.
    [68] GONZALEZ-FERNANDEZ I, KAMINSKA A, DODMANI M, et al. Establishing ozone flux-response relationships for winter wheat:Analysis of uncertainties based on data for UK and Polish genotypes[J]. Atmospheric Environment, 2010, 44(5):621-630.
    [69] 佟磊, 王效科, 肖航, 等. 我国近地层臭氧污染对水稻和冬小麦产量的影响[J]. 生态毒理学报,2015,10(3):161-169.

    TONG L, WANG X K, XIAO H, et al. The effects of surface ozone on the yields of rice and winter wheat in China[J]. Asian Journal of Ecotoxicology, 2015, 10(3):161-169(in Chinese).

    [70] FENG Z W, JIN M H, ZHANG F Z, et al. Effects of ground-level ozone (O3) pollution on the yields of rice and winter wheat in the Yangtze River Delta[J]. Journal of Environmental Sciences, 2003, 15(3):360-362.
    [71] WANG X, ZHANG Q, ZHENG F, et al. Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China[J]. Environmental Pollution, 2012, 171:118-125.
    [72] ZHU Z, SUN X, ZHAO F, et al. Ozone concentrations, flux and potential effect on yield during wheat growth in the Northwest-Shandong Plain of China[J]. Journal of Environmental Sciences, 2015, 34:1-9.
    [73] SHI G, YANG L, WANG Y, et al. Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions[J]. Agriculture, Ecosystems & Environment, 2009, 131(3-4):178-184.
    [74] PANG J, KOBAYASHI K, ZHU J. Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone[J]. Agriculture, Ecosystems & Environment, 2009, 132(3-4):203-211.
    [75] FENG Z, HU E, WANG X, et al. Ground-level O3 pollution and its impacts on food crops in China:A review[J]. Environmental Pollution, 2015, 199:42-48.
    [76] 赵辉, 郑有飞, 魏莉, 等. 南京大气臭氧浓度的季节变化及其对主要作物影响的评估[J]. 环境科学,2018,39(7):3418-3425.

    ZHAO H, ZHENG Y F, WEI L, et al. Seasonal variation in surface ozone and its effect on the winter wheat and rice in Nanjing, China[J]. Environmental Science, 2018, 39(7):3418-3425(in Chinese).

    [77] DINGENEN R V, DENTENER F J, RAES F, et al. The global impact of ozone on agricultural crop yields under current and future air quality legislation[J]. Atmospheric Environment, 2009, 43(3):604-618.
    [78] AVNERY S, MAUZERALL D, LIU J, et al. Global crop yield reductions due to surface ozone exposure:1. Year 2000 crop production losses and economic damage[J]. Atmospheric Environment, 2011, 45(13):2284-2296.
    [79] TANG H, TAKIGAWA M, LIU G, et al. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches[J]. Global Change Biology, 2013, 19(9):2739-2752.
    [80] 姚芳芳, 王效科, 逯非, 等. 臭氧对农业生态系统影响的综合评估:以长江三角洲为例[J]. 生态毒理学报,2008,3(2):185-195.

    YAO F F, WANG X K, LU F, et al. Assessing the impact of ambient ozone on crop ecosystem:a case study in Yangtze Delta, China[J]. Asian Journal of Ecotoxicology, 2008, 3(2):189-195(in Chinese).

    [81] SINHA B, SANGWAN K S, MAURYA Y, et al. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements[J]. Atmospheric Chemistry & Physics, 2015, 15:9555-9576.
    [82] ZHAO H, ZHENG Y F, WU X Y. Assessment of yield and economic losses for wheat and rice due to ground-level O3 exposure in the Yangtze River Delta, China[J]. Atmospheric Environment, 2018, 191:241-248.
    [83] PAOLETTI E, MANNING W J. Toward a biologically significant and usable standard for ozone that will also protect plants[J]. Environmental Pollution, 2007, 150:85-95.
    [84] EMBERSON L, BUKER P, ASHMORE M. A comparison of North American and Asian exposure response data or ozone effects on crop yields[J]. Atmospheric Environment, 2009, 43(12):1945-1953.
    [85] AINSWORTH E A. Rice production in a changing climate:a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration[J]. Global Change Biology, 2008, 14:1642-1650.
    [86] FENG Z, KOBAYASHI K. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis[J]. Atmospheric Environment, 2009, 43:1510-1519.
    [87] MORGAN P B, AINSWORTH E A, LONG S P. How does elevated ozone impact soybean? A Meta-analysis of photosynthesis, growth and yield[J]. Plant Cell & Environment, 2003, 26:1317-1328.
    [88] AINSWORTH E A, DAVEY P A, BERNACCHI C J, et al. A meta-analysis of elevated[CO2] effects on soybean (Glycine max) physiology, growth and yield[J]. Global Change Biology, 2002, 8:695-709.
    [89] 冯兆忠, 小林和彦, 王效科, 等. 小麦产量形成对大气臭氧浓度升高响应的整合分析[J]. 科学通报,2008,53(24):3080-3085.

    FENG Z Z, KOBAYASHI K, WANG X K, et al. A meta-analysis of responses of wheat yield formation to elevated ozone concentration[J]. Chinese Science Bulletin, 2008, 53(24):3080-3085(in Chinese).

    [90] 雷相东, 彭长辉, 田大伦, 等. 整合分析(Meta-analysis)方法及其在全球变化中的应用研究[J]. 科学通报,2006,51(22):2587-2597.

    LEI X D, PENG C H, TIAN D L, et al. Meta-analysis method and its application in global change[J]. Chinese Science Bulletin, 2006, 51(22):2587-2597(in Chinese).

    [91] SICARD P, SERRA R, ROSSELLO P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012[J]. Environmental Research, 2016, 149:122-144.
  • 加载中
计量
  • 文章访问数:  1567
  • HTML全文浏览数:  1567
  • PDF下载数:  69
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-17
  • 刊出日期:  2019-12-10

我国近地层O3污染及其风险评估研究进展

    通讯作者: 郑有飞, E-mail: 20161102054@nuist.edu.cn
  • 1. 南京信息工程大学中国气象局气溶胶与云降水重点开放实验室, 南京, 210044;
  • 2. 南京信息工程大学大气物理学院, 南京, 210044;
  • 3. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 南京, 210044;
  • 4. 北京市通州区气象局, 北京, 101100
基金项目:

国家自然科学基金(41475108)和2017年度江苏省研究生科研创新项目(KYCX_0878)资助.

摘要: 

近地层O3污染及其对作物生长和产量的影响已经引起人们的广泛关注.本文简要回顾了我国地表O3污染水平,重点介绍了O3对作物影响的评估指标和模型的发展及其在风险评估中的应用,深入综述了有关评估O3污染造成作物产量损失方面的工作.此外,对我国未来该领域的研究工作进行了展望,指出今后需要更加有力的控制O3前体物,尤其是VOC的排放.为了准确地评估O3的农业风险,未来还需要在郊区布置一些监测站点,同时在我国主要作物种植区建立当地的O3浓度/通量响应关系模型.另外,今后还需加强基于气孔O3通量指标进行区域尺度O3风险评估的研究工作.

English Abstract

参考文献 (91)

目录

/

返回文章
返回