太原市PM2.5中含碳气溶胶特征分析

张大宇, 刘效峰, 彭林, 白慧玲, 王志磊, 张姝婷, 张建强. 太原市PM2.5中含碳气溶胶特征分析[J]. 环境化学, 2019, (12): 2719-2727. doi: 10.7524/j.issn.0254-6108.2019010203
引用本文: 张大宇, 刘效峰, 彭林, 白慧玲, 王志磊, 张姝婷, 张建强.

太原市PM2.5中含碳气溶胶特征分析

[J]. 环境化学, 2019, (12): 2719-2727. doi: 10.7524/j.issn.0254-6108.2019010203
ZHANG Dayu, LIU Xiaofeng, PENG Lin, BAI Huiling, WANG Zhilei, ZHANG Shuting, ZHANG Jianqiang. Analysis of characteristics of carbonaceous aerosols in PM2.5 of Taiyuan[J]. Environmental Chemistry, 2019, (12): 2719-2727. doi: 10.7524/j.issn.0254-6108.2019010203
Citation: ZHANG Dayu, LIU Xiaofeng, PENG Lin, BAI Huiling, WANG Zhilei, ZHANG Shuting, ZHANG Jianqiang.

Analysis of characteristics of carbonaceous aerosols in PM2.5 of Taiyuan

[J]. Environmental Chemistry, 2019, (12): 2719-2727. doi: 10.7524/j.issn.0254-6108.2019010203

太原市PM2.5中含碳气溶胶特征分析

    通讯作者: 刘效峰, E-mail: liufengyin@sina.com
  • 基金项目:

    国家自然科学基金(41502324)和山西省教育厅高校科技创新项目(2014126)资助.

Analysis of characteristics of carbonaceous aerosols in PM2.5 of Taiyuan

    Corresponding author: LIU Xiaofeng, liufengyin@sina.com
  • Fund Project: Supported by the National Nature Science Foundation of China (41502324)and Shanxi Provincial Education Department University Science and Technology Innovation Project(2014126).
  • 摘要:

    为研究太原市环境空气中含碳组分的时空分布变化规律,于2014年3月、5月、8月、12月采集了太原市3个点位春、夏、秋、冬等4个季节的PM2.5样品,利用碳分析仪(DRI 2001A)测定了样品中OC1、OC2、OC3、OC4、EC1、EC2、EC3、OPC共8种碳组分含量,计算了有机碳(OC)、元素碳(EC)二者浓度,分析了OC和EC的时空分布特征.结果显示,太原市PM2.5中OC和EC的平均质量浓度分别是13.5±14 μg·m-3和6.5±6.1 μg·m-3,其中OC浓度随季节变化顺序为冬季 > 春季 > 夏季 > 秋季,EC浓度季节变化与OC一致.春、夏、秋、冬4个季节总含碳气溶胶(TCA)占PM2.5比例分别为17.6%、9.5%、8.8%、42.3%,其中冬季最高,表明冬季含碳气溶胶污染较为严重.夏季中OC和EC相关性较弱(R2=0.4054),而春季(R2=0.7659)、秋季(R2=0.8253)、冬季(R2=0.8184)OC和EC相关性较强,表明夏季碳气溶胶来源不同.通过(OC/EC)min最小比值法估算二次有机碳(SOC)浓度,春、夏、秋、冬季SOC浓度分别为2.8±2.9 μg·m-3、1.0±0.8 μg·m-3、0.5±0.4 μg·m-3、3.6±3.5 μg·m-3,冬季SOC浓度最高.8种碳组分分析结果显示,不同季节一次排放源中生物质燃烧、机动车尾气排放及煤炭燃烧对太原市含碳气溶胶贡献不同,其中,冬季燃煤和机动车排放使太原市含碳气溶胶污染严重,应加强燃煤和机动车排放源管控,来减轻碳组分污染.

  • 加载中
  • [1] PANICKER A S, Ali K, Beig G, et al. Characterization of particulate matter and carbonaceous aerosol over two urban environments in northern india[J]. Aerosol and Air Quality Research, 2015, 15(7):2584-2595.
    [2] DAN M, ZHUANG G S, LI X X, et al. The characteristics of carbonaceous species and their sources in PM2.5 in Beijing[J]. Atmospheric Environment, 2004, 38(21):3443-3452.
    [3] HUANG H, ZOU C, CAO J J, et al. Carbonaceous aerosol characteristics in outdoor and indoor environments of Nanchang, China, during Summer 2009[J]. Journal of the Air and Waste Management Association, 2011, 61(11):1262-1272.
    [4] WANG P, CAO J J, SHEN Z X, et al. Carbonaceous species in PM2.5 and PM10 in urban area of Zhengzhou in China Seasonal variations and source apportionment[J]. Atmospheric Research, 2017, 191(7):1-11.
    [5] SAMARA C, VOUTSA D, KOURAS A, et al. Organic and elemental carbon associated to PM10 and PM2.5 at urban sites of northern Greece[J]. Environmental Science and Pollution Research, 2014, 21(3):1769-1785.
    [6] SUN F B, LUN X X, LIU X H, et al. Analysis of organic and elemental carbon in heating and non-heating periods in four locations of Beijing[J]. Environmental Technology, 2016, 37(1):121-128.
    [7] LAI S C, ZHAO Y, DING A, et al. Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China[J]. Atmospheric Research, 2016, 167(1):208-215.
    [8] WANG P, CAO J J, SHEN Z X, et al. Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi'an, China[J]. Science of the Total Environment, 2015, 508(8):477-487.
    [9] LI B, ZHANG L M, ZHAO Y, et al. Seasonal variation of urban carbonaceous aerosols in a typical city Nanjing in Yangtze River Delta, China[J]. Atmospheric Environment, 2015, 106(4):223-231.
    [10] HO K F, LEE S C, YU J C, et al. Carbonaceous characteristics of atmospheric particulate matter in Hong Kong[J]. Science of the Total Environment, 2002, 300(1-3):59-67.
    [11] MENG Z Y, JIANG X M, YAN P, et al. Characteristics and sources of PM2.5 and carbonaceous species during winter in Taiyuan, China[J]. Atmospheric Environment, 2007, 41(32):6901-6908.
    [12] CHOW J C, WASTON J G, CHEN L W, et al. The IMPROVE-A temperature protocol for thermal/optical carbon analysis:maintaining consistency with a long-term database[J]. Journal of the Air and Waste Management Association, 2007,57(9):1014-1023.
    [13] ZHU J, XIA X,CHE H, et al. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma[J]. Atmospheric Research, 2016, 16(9), 237-247.
    [14] 刘珊, 彭林,温彦平,等. 太原市PM2.5中有机碳和元素碳的污染特征[J]. 环境科学, 2015.36(2):396-401.

    LIU S, PENG L, WEN Y P, et al. Pollution Characteristics of organic and elemental carbon in PM2.5 in Taiyuan[J]. Science of Enviromental, 2015, 36(2):396-401(in Chinese).

    [15] 史美鲜, 彭林,刘效峰,等. 忻州市环境空气PM10中有机碳和元素碳污染特征分析[J]. 环境科学, 2014, 35(2):458-463.

    SHI M X, PENG L, LIU X F, et al. Characterization of organic and elemental carbon in PM10 in Xinzhou City[J].Science of Enviromental, 2014,35(2):458-463(in Chinese).

    [16] LIU X F, PENG L, BAI H L, et al. Characteristics of organic carbon and elemental carbon in the ambient air of coking plant[J]. Aerosol and Air Quality Research, 2015, 15(4):1485-1493.
    [17] RAM K, SARIN M M.Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India[J]. Journal of Aerosol Science, 2010, 41(1):88-98.
    [18] ZHANG R, JING J, TAO J, et al. Chemical characterization and source apportionment of PM2.5 in Beijing:Seasonal perspective[J]. Atmos. Chem. Phys., 2013, 13(14):7053-7074.
    [19] GU J X, BAI Z P, LIU A X, et al. Characterization of atmospheric organic carbon and element carbon of PM2.5 and PM10 at Tianjin, China[J]. Aerosol and Air Quality Research, 2010, 10(2):167-176.
    [20] HOU B, ZHUANG G S, ZHANG R, et al. The implication of carbonaceous aerosol to the formation of haze:Revealed from the characteristics and sources of OC/EC over a mega-city in China[J]. Journal of Hazardous Materials, 2011, 190(1):529-536.
    [21] GU J X, DU S Y, HAN D W, et al. Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in Jinan, China[J]. Air Quality Atmosphere and Health, 2014, 7(3):251-262.
    [22] TAO J, ZHANG L M, HO K, et al. Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou-the largest megacity in South China[J]. Atmospheric Research, 2014, 135:48-58.
    [23] CASTRO L M, PIO C A, ROY M, et al. Carbonaceous aerosol in urban and rural european atmospheres:Estimation of secondary organic carbon concentrations[J]. Atmospheric Environment, 1999, 33(17):2771-2781.
    [24] 杨健, 丁祥,刘寅,等. 高原城市昆明PM2.5中碳组分污染特征及来源分析[J]. 环境化学, 2017, 36(2):257-264.

    YANF J, DING X, LIU Y, et al. Characteristics and source analysis of carbonaceous components in PM2.5 at a plateau city, Kunming[J]. Enviromental Chemistry, 2017, 36(2):257-264(in Chinese).

    [25] FENG Y L, CHEN Y J, GUO H, et al. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China[J]. Atmospheric Research, 2009, 92(4):434-442.
    [26] JI D S, ZHANG J K, HE J et al. Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China[J]. Atmospheric Environment, 2016, 25:293-306.
    [27] ZHANG R J, CAO J J, LEE S C, et al. Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing[J]. Journal of Environmental Sciences, 2007, 19(5):564-571.
    [28] CAO J J, LEE S C, CHOW J C, et al. Spatial and seasonal distributions of carbonaceous aerosols over China[J]. Journal of Geophysical Research-Atmospheres, 2007, 112(D22):1-9.
    [29] CAO J J, WU F, CHOW J, et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China[J]. Atmospheric Chemistry and Physics, 2005, 5:3127-3137.
    [30] 古金霞, 白志鹏,刘爱霞,等. 天津冬季PM2.5与PM10中有机碳、元素碳的污染特征[J]. 环境污染与防治, 2009, 31(8):33-36.

    GU J X, BAI Z P, LIU A X, et al. Pollution characteristics of OC and EC in PM2.5 and PMl0 in Tianjin winter[J]. Environmental Pollution and Control, 2009, 31(8):33-36(in Chinese).

  • 加载中
计量
  • 文章访问数:  1446
  • HTML全文浏览数:  1446
  • PDF下载数:  48
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-02
  • 刊出日期:  2019-12-10

太原市PM2.5中含碳气溶胶特征分析

    通讯作者: 刘效峰, E-mail: liufengyin@sina.com
  • 1. 太原理工大学环境科学与工程学院, 太原, 030024;
  • 2. 华北电力大学环境科学与工程学院, 北京, 102206;
  • 3. 山西能源学院, 太原, 030600
基金项目:

国家自然科学基金(41502324)和山西省教育厅高校科技创新项目(2014126)资助.

摘要: 

为研究太原市环境空气中含碳组分的时空分布变化规律,于2014年3月、5月、8月、12月采集了太原市3个点位春、夏、秋、冬等4个季节的PM2.5样品,利用碳分析仪(DRI 2001A)测定了样品中OC1、OC2、OC3、OC4、EC1、EC2、EC3、OPC共8种碳组分含量,计算了有机碳(OC)、元素碳(EC)二者浓度,分析了OC和EC的时空分布特征.结果显示,太原市PM2.5中OC和EC的平均质量浓度分别是13.5±14 μg·m-3和6.5±6.1 μg·m-3,其中OC浓度随季节变化顺序为冬季 > 春季 > 夏季 > 秋季,EC浓度季节变化与OC一致.春、夏、秋、冬4个季节总含碳气溶胶(TCA)占PM2.5比例分别为17.6%、9.5%、8.8%、42.3%,其中冬季最高,表明冬季含碳气溶胶污染较为严重.夏季中OC和EC相关性较弱(R2=0.4054),而春季(R2=0.7659)、秋季(R2=0.8253)、冬季(R2=0.8184)OC和EC相关性较强,表明夏季碳气溶胶来源不同.通过(OC/EC)min最小比值法估算二次有机碳(SOC)浓度,春、夏、秋、冬季SOC浓度分别为2.8±2.9 μg·m-3、1.0±0.8 μg·m-3、0.5±0.4 μg·m-3、3.6±3.5 μg·m-3,冬季SOC浓度最高.8种碳组分分析结果显示,不同季节一次排放源中生物质燃烧、机动车尾气排放及煤炭燃烧对太原市含碳气溶胶贡献不同,其中,冬季燃煤和机动车排放使太原市含碳气溶胶污染严重,应加强燃煤和机动车排放源管控,来减轻碳组分污染.

English Abstract

参考文献 (30)

目录

/

返回文章
返回