不同流速下零价铁调控污水管道节点硫转化的影响
Regulation of sulfur transformation of point source in sewage by zero-valent-iron under different flow rates
-
摘要: 研究了不同污水流速下,各粒径零价铁(ZVI)对实际污水中硫化物(S2-)和硫化氢(H2S)浓度以及pH值的影响,并考察了不同污水流速下各粒径ZVI的损失量和消耗量.结果表明,当污水流速为0.2 m·s-1和0.6 m·s-1时,ZVI粒径越小,S2-和H2S的去除效果越好,其中R3-ZVI对S2-和H2S的控制效果最好,但其损失量和消耗量最高且pH偏高(分别为8.5和8.3),而R2-ZVI对S2-和H2S的控制效果与R3-ZVI接近且pH适中(分别为8.1和8.0),当污水流速提高至1.2 m·s-1时,R2-ZVI对S2-和H2S的控制效果最好且pH值适中(7.9),而R3-ZVI的损失量和消耗量因受水流速度影响而显著增加,从而导致其对S2-和H2S的控制效果降低,综合考虑,采用R2-ZVI控制污水中的S2-和H2S产生更经济有效.Abstract: Effects of zero valent iron (ZVI) with different particle sizes on sulfide (S2-) and hydrogen sulfide (H2S) concentrations and pH in actual sewage under different flow rates were studied. The loss and consumption of ZVI with different particle sizes under different flow rates were also investigated. The results indicated that smaller particle size ZVI produced better removal efficiency of S2- and H2S under the flow rates of 0.2 m·s-1 and 0.6 m·s-1. The control effect of R3-ZVI on S2- and H2S was optimal, but the loss and consumption of R3-ZVI were the highest and the pH was higher (8.5 and 8.3 respectively). However, the control effect of R2-ZVI on S2- and H2S was close to that of R3-ZVI and the pH was moderate (8.1 and 8.0 respectively) under the flow rates of 0.2 m·s-1 and 0.6 m·s-1. The control effect of R2-ZVI on S2- and H2S was optimal and the pH (7.9) was moderate under the flow rates of 1.2 m·s-1. However, the loss and consumption of R3-ZVI increased significantly due to the influence of flow velocity, which resulted in the decrease of control effect on S2- and H2S. Considering comprehensively, it was more economical and effective to use R2-ZVI to control the production of S2- and H2S in sewage.
-
Key words:
- flow rates /
- particle sizes /
- zero-valent-iron /
- sulfide /
- hydrogen sulfide
-
[1] PIKAAR I, SHARMA K R, HU S, et al. Reducing sewer corrosion through integrated urban water management[J]. Science, 2014, 345(6198):812-814. [2] GRANDCLERC A, GUEGUEN-MINERBE M, NOUR I, et al. Impact of cement composition on the adsorption of hydrogen sulphide and its subsequent oxidation onto cementitious material surfaces[J]. Construction and Building Materials, 2017, 152:576-586. [3] KONG L, LIU C, CAO M, et al. Mechanism study of the role of biofilm played in sewage corrosion of mortar[J]. Construction and Building Materials, 2018, 164:44-56. [4] [5] GRENGG C, MITTERMAYR F, UKRAINCZYK N, et al. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion:A review[J]. Water Research, 2018, 134:341-352. [6] 黄建洪, 周新云, 周瑜, 等. 不同区域城市排水系统中H2S的溢出规律[J]. 环境化学, 2012, 31(10):1549-1554. HUANG J H, ZHOU X Y, ZHOU Y, et al. Overflow concentration of H2S in different regional cities' sewer systems[J]. Environmental Chemistry, 2012, 31(10):1549-1554(in Chinese).
[7] CHEN D, SZOSTAK P. Factor analysis of H2S emission at a wastewater lift station:A case study[J]. Environmental Monitoring & Assessment, 2013, 185(4):3551-3560. [8] LIANG S, ZHANG L, JIANG F. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage[J]. Water Research, 2016, 100:421-428. [9] 金鹏康, 杨珍瑞, 李蓉, 等. 反硝化抑制硫酸盐还原的工艺特性[J]. 环境科学, 2017, 38(5):1982-1990. JIN P K, YANG Z R, LI R, et al. Characteristics of denitrification inhibiting sulfate reducing process[J]. Environmental Science, 2017, 38(5):1982-1990(in Chinese).
[10] GANIGUE R, JIANG G, LIU Y, et al. Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing[J]. Water Research, 2018, 135:302-310. [11] REBOSURA JR M, SALEHIN S, PIKAAR I, et al. A comprehensive laboratory assessment of the effects of sewer-dosed iron salts on wastewater treatment processes[J]. Water Research, 2018, 146:109-117. [12] JIANG G, KELLER J, BOND P L, et al. Predicting concrete corrosion of sewers using artificial neural network[J]. Water Research, 2016, 92:52-60. [13] LIU Y, GANIGUE R, SHARMA K, et al. Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks[J]. Water Research, 2016, 98:376-383. [14] 王晓伟. 化学吸收-生物法烟气同步脱硫脱硝吸收液中SO42-和NO\|3的生物转化[D]. 大连:大连理工大学, 2016. WANG X W. Bioconversion of sulfate and nitrate in scrubbing liquor of chemical absorption-biological treatment intergrated flue gas simultaneous desulfurization and denitration process[D]. Dalian:Dalian University of Technology, 2016(in Chinese). [15] SHAMMAY A, SIVRET E C, LE-MINH N, et al. Review of odour abatement in sewer networks[J]. Journal of Environmental Chemical Engineering, 2016, 4(4):3866-3881. [16] LIU Y, WU C, ZHOU X, et al. Sulfide elimination by intermittent nitrate dosing in sewer sediments[J]. Journal of Environmental Sciences, 2015, 27:259-265. [17] 赵雅光, 万俊峰, 刘奉滨, 等. 零价铁(ZVI)治理水体砷污染研究进展[J]. 环境化学, 2013, 32(10):1943-1949. ZHAO Y G, WAN J F, LIU F B, et al. Application of zero-valent iron (ZVI) technology for arsenic rem oval from aqueous environment[J]. Environmental Chemistry, 2013, 32(10):1943-1949(in Chinese).
[18] 鲍倩倩, 李锦祥, 关小红. 预磁化强化零价铁除偶氮染料的性能研究[J]. 环境化学, 2017, 36(7):1467-1473. BAO Q Q, LI J X, GUAN X H. Improving the reactivity of zerovalent iron toward various azo dyes by pre-magnetization[J]. Environmental Chemistry, 2017, 36(7):1467-1473(in Chinese).
[19] 杨世迎, 杨鑫, 梁婷, 等. 零价铁还原和过硫酸盐氧化联合降解水中硝基苯[J]. 环境化学, 2012, 31(5):682-686. YANG S Y, YANG X, LIANG T, et al. Degradation of nitrobenzene by the combined system of zero-valent iron reduction and persulfate oxidation[J]. Environmental Chemistry, 2012, 31(5):682-686(in Chinese).
[20] 于新, 豆小敏, 张艳素, 等. 反应条件对零价铁去除As(Ⅲ)动力学的影响[J]. 环境化学, 2011, 30(5):1011-1018. YU X, DOU X M, ZHANG Y S, et al. Effect of reaction conditions on the removal kinetics of As (Ш) by zero-valent iron[J]. Environmental Chemistry, 2011, 30(5):1011-1018(in Chinese).
[21] 钟燕清, 张永清, 陈宪方, 等. 不同螯合剂对零价铁活化过硫酸盐降解对氯苯胺的影响[J]. 环境化学, 2015, 34(4):685-691. ZHONG Y Q, ZHANG Y Q, CHEN X F, et al. Effect of chelating agents on the degradation of p-chloroaniline in Fe0-persulfate system[J]. Environmental Chemistry, 2015, 34(4):685-691(in Chinese).
[22] 上海市建设和交通委员会. 室外排水设计规范(GB50014-2006)[M]. 北京:中国计划出版社, 2014. Shanghai construction and transportation commission. Code for design of outdoor wastewater engineering(GB50014-2006)[M]. Beijing:China Planning Press, 2014. [23] APHA, AWWA, WEF. Standard methods for the examination of water and wastewater (21th ed.)[M]. Washington, DC:American Public Health Association, 2005. [24] 张团结. 城市排水管网恶臭发生影响因素研究[D]. 西安:长安大学, 2014. ZHANG T J. Study on the influencing factors of malodorous occurrence in the city sewer system[D]. Xi'an:Chang'an University, 2014(in Chinese). [25] LIU Y, ZHANG Y, NI B J. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors[J]. Water Research, 2015, 75:292-300. [26] ZHANG J, ZHANG Y, QUAN X, et al. Bioaugmentation and functional partitioning in a zero valent iron-anaerobic reactor for sulfate-containing wastewater treatment[J]. Chemical Engineering Journal, 2011, 174(1):159-165. [27] 李欢旋, 万金泉, 马邕文, 等. 不同粒径零价铁活化过硫酸钠氧化降解酸性橙7的影响及动力学研究[J]. 环境科学, 2014,35(9):3422-3429. LI H X, WAN J Q, MA Y W, et al. Effects of particle size of zero-valent iron on the reactivity of activating persulfate and kinetics for the degradation of acid orange 7[J]. Environmental Science, 2014,35(9):3422-3429(in Chinese).
[28] 徐浩. 零价铁强化厌氧处理煤化工费托合成废水的研究[D]. 哈尔滨:哈尔滨工业大学, 2016. XU H. Study of fischer-tropsch synthesis wasterwater treatment using anaerobic technology enhanced by dosing of ZVI[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese). [29]
计量
- 文章访问数: 1194
- HTML全文浏览数: 1194
- PDF下载数: 38
- 施引文献: 0