丙烯酰胺对水环境中典型微藻的毒性效应

徐文静, 张凯奇, 付强, 谭丽菊. 丙烯酰胺对水环境中典型微藻的毒性效应[J]. 环境化学, 2020, (1): 71-79. doi: 10.7524/j.issn.0254-6108.2019013101
引用本文: 徐文静, 张凯奇, 付强, 谭丽菊. 丙烯酰胺对水环境中典型微藻的毒性效应[J]. 环境化学, 2020, (1): 71-79. doi: 10.7524/j.issn.0254-6108.2019013101
XU Wenjing, ZHANG Kaiqi, FU Qiang, TAN Liju. Toxic effects of acrylamide on phytoplankton in natural waters[J]. Environmental Chemistry, 2020, (1): 71-79. doi: 10.7524/j.issn.0254-6108.2019013101
Citation: XU Wenjing, ZHANG Kaiqi, FU Qiang, TAN Liju. Toxic effects of acrylamide on phytoplankton in natural waters[J]. Environmental Chemistry, 2020, (1): 71-79. doi: 10.7524/j.issn.0254-6108.2019013101

丙烯酰胺对水环境中典型微藻的毒性效应

    通讯作者: 谭丽菊, E-mail: lijutan@ouc.edu.cn
  • 基金项目:

    国家重点研发计划(2016YFC1402101)和国家科技支撑计划(2012BAF14B04)资助.

Toxic effects of acrylamide on phytoplankton in natural waters

    Corresponding author: TAN Liju, lijutan@ouc.edu.cn
  • Fund Project: Supported by the National Key Research and Development Program (2016YFC1402101) and the National Science and Technology Support Program (2012BAF14B04).
  • 摘要: 作为可疑致癌物,丙烯酰胺(acrylamide,AM)是目前各国政府和广大民众普遍关注的重要污染物.为探究AM对水体生物的毒性效应及可能存在的生态风险,本文以海洋微藻东海原甲藻(Prorocentrum donghaiense)和淡水微藻莱茵衣藻(Chlamydomonas reinhardtii)为研究对象,采用室内培养法,测定了不同暴露浓度的AM对2种微藻生长、形态和生理状态的影响.结果显示,AM对2种藻类生长均有显著的抑制作用(P<0.05),96 h半抑制质量浓度(EC50)分别为22.79 mg·L-1和161.8 mg·L-1;最高无抑制浓度(NOEC)分别为1.04 mg·L-1和9.84 mg·L-1.不同微藻对AM胁迫的响应存在较大的差异性,与莱茵衣藻相比,东海原甲藻对AM更敏感.扫描电镜(SEM)和透射电镜(TEM)结果显示,当受到AM影响时,2种藻细胞严重变形,表现出塌陷、质壁分离、空泡数量增多和叶绿体片层结构少量断裂等现象;叶绿素含量和Fv/Fm(PSⅡ最大光化学量子产量)测试表明AM可以通过破坏微藻的光合系统而抑制光合作用.AM对东海原甲藻属于中毒性物质,对莱茵衣藻属于低毒性物质.
  • 加载中
  • [1] WANG S Y, YU C P, PAN Y L, et al. Metabolomics analysis of serum from subjects after occupational exposure to acrylamide using UPLC-MS[J]. Molecular & Cellular Endocrinology, 2017, 444:67-75.
    [2] WEIDEBORG M, KALLQVIST T, ODEGARD K E, et al. Environmental risk assessment of acrylamide and methylolacrylamide from a grouting agent used in the tunnel construction of Romeriksporten, Norway[J]. Water Research, 2001, 35(11):2645-2652.
    [3] 张志荣, 李斌, 肖经纬, 等.丙烯酰胺的生物标志物研究概况[J]. 毒理学杂志, 2011,25(2):149-152.

    ZHANG Z R, LI B, XIAO J W, et al. Study on biomarkers of acrylamide[J]. Journal of Toxicology, 2011, 25(2):149-152(in Chinese).

    [4] 简龙海, 郑荣, 陈丹丹, 等.液相色谱-串联质谱法快速测定化妆品中的丙烯酰胺[J]. 分析试验室, 2015, 34(11):1317-1321.

    JIAN L H, ZHENG R, CHEN D D, et al. Rapid determination of acrylamide in cosmetics by liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(11):1317-1321(in Chinese).

    [5] 任祥祥, 李支薇, 王华, 等.GC-MS测定塑料中丙烯酰胺残留量[J]. 广东化工, 2016, 43(8):188-189.

    REN X X, LI Z W, WANG H, et al. Determination of acrylamide in plastics by gas chromatography mass-spectrometry[J]. Guangdong Chemical, 2016, 43(8):188-189(in Chinese).

    [6] JE Y. Dietary acrylamide intake and risk of endometrial cancer in prospective cohort studies[J]. Archives of Gynecology & Obstetrics, 2015, 291(6):1395-1401.
    [7] 陈芳, 袁媛, 刘野, 等.食品中丙烯酰胺研究进展[J]. 中国粮油学报, 2006, 21(2):124-128.

    CHEN F, YUAN Y, LIU Y, et al. Recent research on acrylamide in food[J]. Journal of the Chinese Cereals and Oils Association, 2006, 21(2):124-128(in Chinese).

    [8] HOGERVORST J G, PA V D B, GODSCHALK R W, et al. The influence of single nucleotide polymorphisms on the association between dietary acrylamide intake and endometrial cancer risk[J]. Scientific Reports, 2016, 6:34902
    [9] 樊振江, 孟楠.油炸食品中丙烯酰胺的形成及减少措施[J]. 现代食品, 2017, 3(6):27-29.

    FAN Z J, MENG N. Formation and reduction of acrylamide in fried food[J]. Modern Food, 2017, 3(6):27-29(in Chinese).

    [10] 阴永泼.姜粉对热加工食品中丙烯酰胺生成影响的研究[D]. 广州:华南理工大学, 2017, 1-3. YIN Y P. Effect of ginger powder on the formation of acrylamide in heat processed food[D]. Guangzhou:South China University of Technology, 2017, 1

    -3(in Chinese).

    [11] 丁茂柏.科学评估丙烯酰胺危害[J]. 中国职业医学, 2007, 34(1):61-64.

    DING M B. Scientifice valuation on the hazards of acrylamide[J]. China Occupational Medicine, 2007, 34(1):61-64(in Chinese).

    [12] HU Q, XU X, FU Y, et al. Rapid methods for detecting acrylamide in thermally processed foods:A review[J]. Food Control, 2015, 56:135-146.
    [13] HUANG M M, JIAO J J, WANG J, et al. Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis[J]. Environmental Pollution, 2017, 234:656-666.
    [14] AYUOB N, ALKARIM S, ELASSOULI S, et al. Effects of low dose acrylamide on the rat reproductive organs structure, fertility and gene integrity[J]. Asian Pacific Journal of Reproduction, 2015, 4(3):179-187.
    [15] 赵红, 江城梅, 赵文红, 等.丙烯酰胺致大鼠氧化损伤作用的实验研究[J]. 环境与健康杂志, 2008, 25(11):1013-1014.

    ZHAO H, JIANG C M, ZHAO W H, et al. Experimental study of oxidative damage induced by acrylamide in rats[J]. Journal of Envoirnment and Health, 2008, 25(11):1013-1014(in Chinese).

    [16] LEE K Y, SHIBUTANI M, KUROIWA K, et al. Chemoprevention of acrylamide toxity by antioxidative agents in rats-effective suppression of testicular toxicity by phenylethyl isothiocyanate[J]. Archices of Toxicology, 2005, 79(9):531-541.
    [17] CHEN J H, YANG C H, WANG Y S, et al. Acrylamide-induced mitochondria collapse and apoptosis in human astrocytoma cells[J]. Food & Chemical Toxicology, 2013, 51(1):446-452.
    [18] 曹秀明, 罗飞, 樊宇, 等.丙烯酰胺对斑马鱼各器官的毒性作用及生殖细胞的DNA损伤[J]. 生态毒理学报, 2016, 11(1):382-388.

    CAO X M, LUO F, FAN Y, et al. Toxic effects of acrylamide on zebrafish organs and DNA damage of germ cell[J]. Asian Journal of Ecotoxicology, 2016, 11(1):382-388(in Chinese).

    [19] 国家质检总局检验监管司.欧盟物质和混合物分类、标签和包装法规(CLP)指南[M]. 北京:中国标准出版社, 2010. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. EU Regulation on Classification, Labeling and Packaging of Substances and Mixtures (CLP)[M]. Beijing:Standards Press of China, 2010(in Chinese).
    [20] IARC. Monographs on the evaluation of carcinogenic risks to humans:some industrial chemicals[J]. Lyon:International Agency for Research on Cancer, 1994, 60:389-433.
    [21] 吴明珠, 何梅琳, 邹山梅, 等.纳米MgO对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7):1259-1267.

    WU M Z, HE M L, ZOU S M, et al. Toxicities and mechanisms of MgO nanoparticles to Scenedesmus obliquus [J]. Environmental Chemistry, 2015, 34(7):1259-1267(in Chinese).

    [22] 徐田枚, 张洪涛, 吾甫尔·米吉提, 等.莱茵衣藻Nfr-4突变株中类胡萝卜素含量的变化及其对藻生长的影响[J]. 植物生理学报, 2007, 43(3):417-420.

    XU T M, ZHANG H T, GHOPUR MIJIT, et al. Change in carotenoid contents of Chlamydomonas reinhardtii mutant strain Nfr-4 and its effect on alge growth[J]. Plant Physiology Communications, 2007, 43(3):417-420(in Chinese).

    [23] 张鑫鑫, 唐学玺, 姜爽, 等.2, 2', 4, 4'-四溴联苯醚(BDE-47)对米氏凯伦藻的毒性效应[J]. 海洋环境科学, 2013, 32(4):491-496.

    ZHANG X X, TANG X X, JIANG S, et al. Toxic effect of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) on Karenia mikimotoi in the different levels of biological organizations[J]. Marine Environmental Science, 2013, 32(4):491-496(in Chinese).

    [24] 解瑞丽, 周启星. 丙烯酰胺的环境暴露、生态行为与毒理效应研究进展[J]. 生态学杂志, 2013, 32(5):1347-1354.

    XIE R L, ZHOU Q X. Environmental exposure, ecological behavior, and toxicological effect of acrylamide:A review[J]. Chinese Journal of Ecology, 32(5):1347-1354(in Chinese).

    [25] 王自齐.有毒化学品卫生与安全实用手册[M]. 北京:化学工业出版社, 1993:88-89. WANG Z Q. Practical manual on hygiene and safety of toxic chemicals[M]. Beijing:Chemical Industry Press, 1993:88

    -89(in Chinese).

    [26] 徐英江, 黄会, 邹荣婕, 等.乙酰甲喹对小新月菱形藻、等鞭金藻3011的毒性效应[J]. 南方水产科学, 2017, 13(3):97-103.

    XU Y J, HUANG H, ZOU R J, et al. Toxic effect of mequindox on Nitzschia closterium f. minutissima and Isochrysis galbana parke 3011[J]. South China Fisheries Science, 2017, 13(3):97-103(in Chinese).

    [27] XUE Q N, WANG R, XU W J, et al. The stresses of allelochemicals isolated from culture solution of diatom Phaeodactylum tricornutum Bohlin on growth and physiology of two marine algae[J]. Aquatic Toxicology, 2018, 205:51-57.
    [28] SVERDRUP L E, KALLQVIST T, KELLEY A E, et al. Comparative toxicity of acrylic acid to marine and freshwater microalgae and the significance for environmental effects assessments[J]. Chemosphere, 2001, 45(4):653-658.
    [29] 姜思, 刘莹莹, 佟少明.4种常用抗生素对莱茵衣藻生长及光化学活性的影响[J]. 生物加工过程, 2017, 15(2):13-20.

    JIANG S, LIU Y Y, TONG S M. Effects of four antibiotics on growth and photochemical activities of Chlamydomonas reinhardtii[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(2):13-20(in Chinese).

    [30] 刘莉莉, 孙凯峰, 李玉成, 等.壬基酚对四尾棚藻生长及群体形成的影响[J]. 安徽农业大学学报, 2016, 43(2):266-269.

    LIU L L, SUN K C, LI Y C, et al. Effect of nonylphenol on Scenedesmus quadricanda growth and colony formation[J]. Journal of Anhui Agricultural University, 2016, 43(2):266-269(in Chinese).

    [31] 王昭玉.叶绿素荧光参数对氮、磷限制的响应及其在赤潮生消过程中的变化特征研究[D]. 青岛:中国海洋大学, 2013. WANG Z Y. Responses of Chlorophyll a fluorescence parameter to nitrogen or phosphorus limitation and the variation of Chlorophyll a fluorescence parameter during the process of algal blooms[D]. Qingdao:Ocean University of China, 2013(in Chinese).
    [32] WANG R, HUA M, YU Y, et al. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry[J]. Chemosphere, 2016, 147:264-271.
  • 加载中
计量
  • 文章访问数:  1902
  • HTML全文浏览数:  1902
  • PDF下载数:  83
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-31
  • 刊出日期:  2020-01-01

丙烯酰胺对水环境中典型微藻的毒性效应

    通讯作者: 谭丽菊, E-mail: lijutan@ouc.edu.cn
  • 1. 中国海洋大学化学化工学院, 青岛, 266100;
  • 2. 江苏省水文水资源勘测局盐城分局, 盐城, 224002;
  • 3. 盐城工学院环境科学与工程学院, 江苏省环境保护海涂生态与污染控制重点实验室, 盐城, 224051
基金项目:

国家重点研发计划(2016YFC1402101)和国家科技支撑计划(2012BAF14B04)资助.

摘要: 作为可疑致癌物,丙烯酰胺(acrylamide,AM)是目前各国政府和广大民众普遍关注的重要污染物.为探究AM对水体生物的毒性效应及可能存在的生态风险,本文以海洋微藻东海原甲藻(Prorocentrum donghaiense)和淡水微藻莱茵衣藻(Chlamydomonas reinhardtii)为研究对象,采用室内培养法,测定了不同暴露浓度的AM对2种微藻生长、形态和生理状态的影响.结果显示,AM对2种藻类生长均有显著的抑制作用(P<0.05),96 h半抑制质量浓度(EC50)分别为22.79 mg·L-1和161.8 mg·L-1;最高无抑制浓度(NOEC)分别为1.04 mg·L-1和9.84 mg·L-1.不同微藻对AM胁迫的响应存在较大的差异性,与莱茵衣藻相比,东海原甲藻对AM更敏感.扫描电镜(SEM)和透射电镜(TEM)结果显示,当受到AM影响时,2种藻细胞严重变形,表现出塌陷、质壁分离、空泡数量增多和叶绿体片层结构少量断裂等现象;叶绿素含量和Fv/Fm(PSⅡ最大光化学量子产量)测试表明AM可以通过破坏微藻的光合系统而抑制光合作用.AM对东海原甲藻属于中毒性物质,对莱茵衣藻属于低毒性物质.

English Abstract

参考文献 (32)

目录

/

返回文章
返回