环境中黑炭测定方法的研究进展

田路萍, 李贵弘, 梁妮, 阳雄义. 环境中黑炭测定方法的研究进展[J]. 环境化学, 2020, (1): 166-178. doi: 10.7524/j.issn.0254-6108.2019021902
引用本文: 田路萍, 李贵弘, 梁妮, 阳雄义. 环境中黑炭测定方法的研究进展[J]. 环境化学, 2020, (1): 166-178. doi: 10.7524/j.issn.0254-6108.2019021902
TIAN Luping, LI Guihong, LIANG Ni, YANG Xiongyi. Research progress of determination methods for environmental black carbon[J]. Environmental Chemistry, 2020, (1): 166-178. doi: 10.7524/j.issn.0254-6108.2019021902
Citation: TIAN Luping, LI Guihong, LIANG Ni, YANG Xiongyi. Research progress of determination methods for environmental black carbon[J]. Environmental Chemistry, 2020, (1): 166-178. doi: 10.7524/j.issn.0254-6108.2019021902

环境中黑炭测定方法的研究进展

    通讯作者: 阳雄义, E-mail: 673494884@qq.com
  • 基金项目:

    云南省人才培养项目(KKSY201622013)资助.

Research progress of determination methods for environmental black carbon

    Corresponding author: YANG Xiongyi, 673494884@qq.com
  • Fund Project: Supported by Yunnan Province Talent Training Program(KKSY201622013).
  • 摘要: 环境介质中黑炭含量的测定不仅能够准确评估环境黑炭储量,也是表征黑炭性质的重要环节,研究与发展环境黑炭测定技术是探究全球碳循环和黑炭环境效应的重要基石.本文依据测定原理,将黑炭测定方法分为化学氧化法、热氧化法、分子标志物法和光学法,介绍了各种技术的发展与测定特点,并根据黑炭基准材料指导委员会推荐的12种标准物质测定结果,比较了不同黑炭测定方法测定结果存在差异的主要原因,总结归纳了每种测定方法的优缺点.另外,基于研究现状分析,指出黑炭测定方法的比较性研究、黑炭性质精确描述技术的丰富与发展、多种方法结合使用描述黑炭性质、监测黑炭降解周期内的性质变化及其自身降解可能造成的环境影响将成为未来环境介质中黑炭研究领域的重点.
  • 加载中
  • [1] DICKENS A F, G LINAS Y, MASIELLO C A, et al.Reburial of fossil organic carbon in marine sediments[J]. Nature, 2004, 427(6972):336-339.
    [2] FERNANDES M B, SKJEMSTAD J O, JOHNSON B B, et al.Characterization of carbonaceous combustion residues. Ⅰ. Morphological, elemental and spectroscopic features[J]. Chemosphere, 2003, 51(8):785-795.
    [3] SANTIN C, DOERR S H, KANE E S, et al.Towards a global assessment of pyrogenic carbon from vegetation fires[J]. Global Change Biology, 2016, 22(1):76-91.
    [4] MAESTRINI B, MIESEL J R. Modification of the weak nitric acid digestion method for the quantification of black carbon in organic matrices[J]. Organic Geochemistry, 2017, 103:136-139.
    [5] BRODOWSKI S, JOHN B, FLESSA H, et al.Aggregate-occluded black carbon in soil[J]. European Journal of Soil Science, 2006, 57(4):539-546.
    [6] BIRD M I, WYNN J G, SAIZ G, et al.The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43:273-298.
    [7] COTRUFO M F, BOOT C, ABIVEN S, et al.Quantification of pyrogenic carbon in the environment:An integration of analytical approaches[J]. Organic Geochemistry, 2016, 100:42-50.
    [8] WOLF M, LEHNDORFF E, WIESENBERG G L, et al.Towards reconstruction of past fire regimes from geochemical analysis of charcoal[J]. Organic Geochemistry, 2013, 55:11-21.
    [9] KOELMANS A A, JONKER M T, CORNELISSEN G, et al.Black carbon:The reverse of its dark side[J]. Chemosphere, 2006, 63(3):365-377.
    [10] MING J, CACHIER H, XIAO C, et al.Black carbon record based on a shallow Himalayan ice core and its climatic implications[J]. Atmospheric Chemistry and Physics, 2008, 8(5):1343-1352.
    [11] MING J, XIAO C, CACHIER H, et al.Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos[J]. Atmospheric Research, 2009, 92(1):114-123.
    [12] PARK J H, CHOPPALA G K, BOLAN N S, et al.Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant and soil, 2011, 348(1-2):439-451.
    [13] FANG G, LIU C, WANG Y, et al.Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation[J]. Applied Catalysis B:Environmental, 2017, 214:34-45.
    [14] WU H, LAI C, ZENG G, et al.The interactions of composting and biochar and their implications for soil amendment and pollution remediation:a review[J]. Critical Reviews in Biotechnology, 2017, 37(6):754-764.
    [15] SORRENTI G, MASIELLO C A, DUGAN B, et al.Biochar physico-chemical properties as affected by environmental exposure[J]. Science of the total Environment, 2016, 563:237-246.
    [16] GELINAS Y, PRENTICE K M, BALDOCK J A, et al.An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils[J]. Environmental Science & Technology, 2001, 35(17):3519-3525.
    [17] SONG J, PENG P A, HUANG W. Black carbon and kerogen in soils and sediments. 1. Quantification and characterization[J]. Environmental Science & Technology, 2002, 36(18):3960-3967.
    [18] GLASER B, HAUMAIER L, GUGGENBERGER G, et al.Black carbon in soils:The use of benzenecarboxylic acids as specific markers[J]. Organic Geochemistry, 1998, 29(4):811-819.
    [19] KRALOVEC A C, CHRISTENSEN E R, VAN CAMP R P. Fossil fuel and wood combustion as recorded by carbon particles in Lake Erie sediments 1850-1998[J]. Environmental Science & Technology, 2002, 36(7):1405-1413.
    [20] SCHMIDT M W, SKJEMSTAD J O, CZIMCZIK C I, et al.Comparative analysis of black carbon in soils[J]. Global Biogeochemical Cycles, 2001, 15(1):163-167.
    [21] WATSON J G. Summary of organic and elemental carbon/black carbon analysis methods and interconparisons[J]. Aerosol and Air Quality, 2005, 5:65-102.
    [22] MASIELLO C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92(1):201-213.
    [23] POOT A, QUIK J T, VELD H, et al.Quantification methods of black carbon:Comparison of rock-eval analysis with traditional methods[J]. Journal of Chromatography A, 2009, 1216(3):613-622.
    [24] KUHLBUSCH T. Method for determining black carbon in residues of vegetation fires[J]. Environmental Science & Technology, 1995, 29(10):2695-2702.
    [25] GUSTAFSSON Ö, HAGHSETA F, CHAN C, et al.Quantification of the dilute sedimentary soot phase:Implications for PAH speciation and bioavailability[J]. Environmental Science & Technology, 1996, 31(1):203-209.
    [26] GUSTAFSSON Ö, BUCHELI T D, KUKULSKA Z, et al.Evaluation of a protocol for the quantification of black carbon in sediments[J]. Global Biogeochemical Cycles, 2001, 15(4):881-890.
    [27] AGARWAL T, BUCHELI T D. Adaptation, validation and application of the chemo-thermal oxidation method to quantify black carbon in soils[J]. Environmental Pollution, 2011, 159(2):532-538.
    [28] NGUYEN T H, BROWN R A, BALL W P. An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment[J]. Organic Geochemistry, 2004, 35(3):217-234.
    [29] ELMQUIST M, CORNELISSEN G, KUKULSKA Z, et al.Distinct oxidative stabilities of char versus soot black carbon:Implications for quantification and environmental recalcitrance[J]. Global Biogeochemical Cycles, 2006, 20(2), doi:10.1029/2005GB002629.
    [30] ZHANG X, LI J, MO Y, et al.Isolation and radiocarbon analysis of elemental carbon in atmospheric aerosols using hydropyrolysis[J]. Atmospheric Environment, 2019, 198:381-386.
    [31] ANSARI S, WAHEED S, ALI U, et al.Assessing residual status and spatial variation of current-use pesticides under the influence of environmental factors in major cash crop growing areas of Pakistan[J]. Chemosphere, 2018, 212:486-496.
    [32] ZONG Y, XIAO Q, LU S. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils[J]. Environmental Science and Pollution Research, 2018, 25(4):3301-3312.
    [33] CUYPERS C, GROTENHUIS T, NIEROP K G, et al.Amorphous and condensed organic matter domains:The effect of persulfate oxidation on the composition of soil/sediment organic matter[J]. Chemosphere, 2002, 48(9):919-931.
    [34] WURSTER C M, SAIZ G, SCHNEIDER M P, et al.Quantifying pyrogenic carbon from thermosequences of wood and grass using hydrogen pyrolysis[J]. Organic Geochemistry, 2013, 62:28-32.
    [35] MURADOV N, FIDALGO B, GUJAR A C, et al.Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming[J]. Biomass & Bioenergy, 2012, 42(5):123-131.
    [36] REDDY C M, PEARSON A, XU L, et al.Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples[J]. Environmental Science & Technology, 2002, 36(8):1774-1782.
    [37] LUKASEWYCZ M T, BURKHARD L P. Complete elimination of carbonates:A critical step in the accurate measurement of organic and black carbon in sediments[J]. Environmental Toxicology and Chemistry:An International Journal, 2005, 24(9):2218-2221.
    [38] SMITH D M, GRIFFIN J J, GOLDBERG E D. Spectrometric method for the quantitative determination of elemental carbon[J]. Analytical Chemistry, 1975, 47(2):233-238.
    [39] KURTH V, MACKENZIE M, DELUCA T. Estimating charcoal content in forest mineral soils[J]. Geoderma, 2006, 137(1-2):135-139.
    [40] SIMPSON M J, HATCHER P G. Determination of black carbon in natural organic matter by chemical oxidation and solid-state 13C nuclear magnetic resonance spectroscopy[J]. Organic Geochemistry, 2004, 35(8):923-935.
    [41] HAO R, WANG P, WU Y, et al.Impacts of water level fluctuations on the physicochemical properties of black carbon and its phenanthrene adsorption-desorption behaviors[J]. Ecological engineering, 2017, 100:130-137.
    [42] KUMAR V, SINGH S, MAHAJAN N. Tillage, crop residue, and nitrogen levels on dynamics of soil labile organic carbon fractions, productivity and grain quality of wheat crop in Typic Ustochrept soil[J]. Journal of Pharmacognosy and Phytochemistry, 2018, 7(1):598-609.
    [43] MIDDELBURG J J, NIEUWENHUIZE J, VAN BREUGEL P. Black carbon in marine sediments[J]. Marine Chemistry, 1999, 65(3-4):245-252.
    [44] WOLBACH W S, ANDERS E. Elemental carbon in sediments:Determination and isotopic analysis in the presence of kerogen[J]. Geochimica et Cosmochimica Acta, 1989, 53(7):1637-1647.
    [45] BIRD M I, GRÖCKE D R. Determination of the abundance and carbon isotope composition of elemental carbon in sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(16):3413-3423.
    [46] MASIELLO C, DRUFFEL E, CURRIE L A. Radiocarbon measurements of black carbon in aerosols and ocean sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(6):1025-1036.
    [47] LIM B, CACHIER H. Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays[J]. Chemical Geology, 1996, 131(1-4):143-154.
    [48] CHANG Z, TIAN L, LI F, et al.Benzene polycarboxylic acid-A useful marker for condensed organic matter, but not for only pyrogenic black carbon[J]. Science of the Total Environment, 2018, 626:660-667.
    [49] BRODOWSKI S, RODIONOV A, HAUMAIER L, et al.Revised black carbon assessment using benzene polycarboxylic acids[J]. Organic Geochemistry, 2005, 36(9):1299-1310.
    [50] BORCHARD N, LADD B, ESCHEMANN S, et al.Black carbon and soil properties at historical charcoal production sites in Germany[J]. Geoderma, 2014, 232:236-242.
    [51] KHAN A L, JAFF R, DING Y, et al.Dissolved black carbon in Antarctic lakes:Chemical signatures of past and present sources[J]. Geophysical Research Letters, 2016, 43(11):5750-5757.
    [52] SCHNITZER M, CALDERONI G. Some chemical characteristics of paleosol humic acids[J]. Chemical Geology, 1985, 53(3-4):175-184.
    [53] SCHNEIDER M P W, HILF M, VOGT U F, et al.The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200℃ and 1000℃[J]. Organic Geochemistry, 2010, 41(10):1082-1088.
    [54] DITTMAR T.The molecular level determination of black carbon in marine dissolved organic matter[J]. Organic Geochemistry, 2008, 39(4):396-407.
    [55] WIEDEMEIER D B, HILF M D, SMITTENBERG R H, et al.Improved assessment of pyrogenic carbon quantity and quality in environmental samples by high-performance liquid chromatography[J]. Journal of Chromatography A, 2013, 1304(16):246-250.
    [56] SCHNEIDER M P W, LEHMANN J, SCHMIDT M W I.Charcoal quality does not change over a century in a tropical agro-ecosystem[J]. Soil Biology & Biochemistry, 2011, 43(9):1992-1994.
    [57] LEHNDORFF E, ROTH P J, CAO Z H, et al.Black carbon accrual during 2000 years of paddy-rice and non-paddy cropping in the Yangtze River Delta, China[J]. Global Change Biology, 2014, 20(6):1968-1978.
    [58] LI F, PAN B, ZHANG D, et al.Organic matter source and degradation as revealed by molecular biomarkers in agricultural soils of Yuanyang terrace[J]. Scientific Reports, 2015, 5:11074.
    [59] HANKE U M, WACKER L, HAGHIPOUR N, et al. Comprehensive radiocarbon analysis of benzene polycarboxylic acids (BPCAs) derived from pyrogenic carbon in environmental samples[J]. Radiocarbon, 2017, 59(4):1-14.
    [60] MARQUES J S J, DITTMAR T, NIGGEMANN J, et al.Dissolved black carbon in the headwaters-to continuum of PARAÍBA do Sul River, Brazil[J]. Frontiers in Earth Science, 2017, 5(11):1-12.
    [61] COTRUFO M F, BOOT C M, KAMPF S, et al.Redistribution of pyrogenic carbon from hillslopes to stream corridors following a large montane wildfire[J]. Global Biogeochemical Cycles, 2016, 30(9):1348-1355.
    [62] ZIOLKOWSKI L A, CHAMBERLIN A R, GREAVES J, et al.Quantification of black carbon in marine systems using the benzene polycarboxylic acid method:a mechanistic and yield study[J]. Limnology & Oceanography Methods, 2011, 9(4):140-149.
    [63] BRODOWSKI S, AMELUNG W, HAUMAIER L, et al.Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy[J]. Geoderma, 2005, 128(1-2):116-129.
    [64] KIRCHSTETTER T W, NOVAKOV T.Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods[J]. Atmospheric Environment, 2007, 41(9):1874-1888.
    [65] CHOW J C, WATSON J G, LOWENTHAL D H, et al.Particulate carbon measurements in California's San Joaquin valley[J]. Chemosphere, 2006, 62(3):337-348.
    [66] HAN Y, CAO J, CHOW J C, et al.Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC[J]. Chemosphere, 2007, 69(4):569-574.
    [67] HAN Y, CAO J, AN Z, et al.Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments[J]. Chemosphere, 2007, 69(4):526-533.
    [68] FANG Y, CHEN Y, HU L, et al.Large-river dominated black carbon flux and budget:A case study of the estuarine-inner shelf of East China Sea, China[J]. Science of the Total Environment, 2019, 651:2489-2496.
    [69] FANG Y, CHEN Y, TIAN C, et al.Flux and budget of BC in the continental shelf seas adjacent to Chinese high BC emission source regions[J]. Global Biogeochemical Cycles, 2015, 29(7):957-972.
    [70] HU L, SHI X, BAI Y, et al.Distribution, input pathway and mass inventory of black carbon in sediments of the Gulf of Thailand, SE Asia[J]. Estuarine, Coastal and Shelf Science, 2016, 170:10-19.
    [71] SKJEMSTAD J, CLARKE P, TAYLOR J, et al.The removal of magnetic materials from surface soils-a solid state 13C CP/MAS NMR study[J]. Soil Research, 1994, 32(6):1215-1229.
    [72] CRECELIUS A C, VITZ J, N THE K, et al.Effect of ecosystem type and fire on chemistry of WEOM as measured by LDI-TOF-MS and NMR[J]. Talanta, 2017, 162:589-596.
    [73] DE LA ROSA J, KNICKER H, L PEZ-CAPEL E, et al.Direct detection of black carbon in soils by Py-GC/MS, carbon-13 NMR spectroscopy and thermogravimetric techniques[J]. Soil Science Society of America Journal, 2008, 72(1):258-267.
    [74] BORNEMANN L, WELP G, BRODOWSKI S, et al.Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy[J]. Organic Geochemistry, 2008, 39(11):1537-1544.
    [75] ROTH P J, LEHNDORFF E, BRODOWSKI S, et al.Differentiation of charcoal, soot and diagenetic carbon in soil:Method comparison and perspectives[J]. Organic Geochemistry, 2012, 46:66-75.
    [76] 庞博, 吉东生, 刘子锐, 等.大气细颗粒物中有机碳和元素碳监测方法对比[J]. 环境科学, 2016, 37(4):1230-1239.

    PANG B, JI D S, LIU Z R, et al. Comparison of monitoring methods of organic carbon and element carbon in atmospheric fine particles[J]. Environmental Science, 2016, 37(4):1230-1239(in Chinese).

    [77] CHOW J C, WATSON J G, CHEN L-W A, et al.Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols[J]. Environmental Science & Technology, 2004, 38(16):4414-4422.
    [78] JURADO E, DACHS J, DUARTE C M, et al.Atmospheric deposition of organic and black carbon to the global oceans[J]. Atmospheric Environment, 2008, 42(34):7931-7939.
    [79] JAFF R, DING Y, NIGGEMANN J, et al.Global charcoal mobilization from soils via dissolution and riverine transport to the oceans[J]. Science, 2013, 340(6130):345-347.
    [80] WAGNER S, JAFF R, STUBBINS A.Dissolved black carbon in aquatic ecosystems[J]. Limnology and Oceanography Letters, 2018, 3(3):168-185.
    [81] WAGNER S, BRANDES J, GORANOV A I, et al.Online quantification and compound-specific stable isotopic analysis of black carbon in environmental matrices via liquid chromatography-isotope ratio mass spectrometry[J]. Limnology and Oceanography:Methods, 2017, 15(12):995-1006.
    [82] VORRES K S. The Argonne premium coal sample program[J]. Energy & Fuels, 1990, 4(5):420-426.
    [83] HAMMES K, SCHMIDT M W I, SMERNIK R J, et al.Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere[J]. Global Biogeochemical Cycles, 2007, 21(3), doi:10.1029/2006GB002914.
    [84] CURRIE L A, BENNER JR B A, KESSLER J, et al.A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a[J]. Journal of Research of the National Institute of Standards and Technology, 2002, 107(3):279-298.
  • 加载中
计量
  • 文章访问数:  3544
  • HTML全文浏览数:  3544
  • PDF下载数:  253
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-19
  • 刊出日期:  2020-01-01
田路萍, 李贵弘, 梁妮, 阳雄义. 环境中黑炭测定方法的研究进展[J]. 环境化学, 2020, (1): 166-178. doi: 10.7524/j.issn.0254-6108.2019021902
引用本文: 田路萍, 李贵弘, 梁妮, 阳雄义. 环境中黑炭测定方法的研究进展[J]. 环境化学, 2020, (1): 166-178. doi: 10.7524/j.issn.0254-6108.2019021902
TIAN Luping, LI Guihong, LIANG Ni, YANG Xiongyi. Research progress of determination methods for environmental black carbon[J]. Environmental Chemistry, 2020, (1): 166-178. doi: 10.7524/j.issn.0254-6108.2019021902
Citation: TIAN Luping, LI Guihong, LIANG Ni, YANG Xiongyi. Research progress of determination methods for environmental black carbon[J]. Environmental Chemistry, 2020, (1): 166-178. doi: 10.7524/j.issn.0254-6108.2019021902

环境中黑炭测定方法的研究进展

    通讯作者: 阳雄义, E-mail: 673494884@qq.com
  • 1. 昆明理工大学环境科学与工程学院, 昆明, 650500;
  • 2. 云南省环境科学研究院, 昆明, 650034;
  • 3. 昆明翊佐环境科技有限公司, 昆明, 650200;
  • 4. 云南省林业调查规划院生态分院, 昆明, 650000
基金项目:

云南省人才培养项目(KKSY201622013)资助.

摘要: 环境介质中黑炭含量的测定不仅能够准确评估环境黑炭储量,也是表征黑炭性质的重要环节,研究与发展环境黑炭测定技术是探究全球碳循环和黑炭环境效应的重要基石.本文依据测定原理,将黑炭测定方法分为化学氧化法、热氧化法、分子标志物法和光学法,介绍了各种技术的发展与测定特点,并根据黑炭基准材料指导委员会推荐的12种标准物质测定结果,比较了不同黑炭测定方法测定结果存在差异的主要原因,总结归纳了每种测定方法的优缺点.另外,基于研究现状分析,指出黑炭测定方法的比较性研究、黑炭性质精确描述技术的丰富与发展、多种方法结合使用描述黑炭性质、监测黑炭降解周期内的性质变化及其自身降解可能造成的环境影响将成为未来环境介质中黑炭研究领域的重点.

English Abstract

参考文献 (84)

返回顶部

目录

/

返回文章
返回