钛基催化剂制备及其光分解磷化氢性能

唐雪娇, 马淑红, 章鹏鹏, 王晋刚. 钛基催化剂制备及其光分解磷化氢性能[J]. 环境化学, 2020, (2): 371-377. doi: 10.7524/j.issn.0254-6108.2019022006
引用本文: 唐雪娇, 马淑红, 章鹏鹏, 王晋刚. 钛基催化剂制备及其光分解磷化氢性能[J]. 环境化学, 2020, (2): 371-377. doi: 10.7524/j.issn.0254-6108.2019022006
TANG Xuejiao, MA Shuhong, ZHANG Pengpeng, WANG Jingang. Preparation of Ti-based catalyst and its photocatalytic decomposition performance of PH3[J]. Environmental Chemistry, 2020, (2): 371-377. doi: 10.7524/j.issn.0254-6108.2019022006
Citation: TANG Xuejiao, MA Shuhong, ZHANG Pengpeng, WANG Jingang. Preparation of Ti-based catalyst and its photocatalytic decomposition performance of PH3[J]. Environmental Chemistry, 2020, (2): 371-377. doi: 10.7524/j.issn.0254-6108.2019022006

钛基催化剂制备及其光分解磷化氢性能

    通讯作者: 王晋刚, E-mail: thunk@126.com
  • 基金项目:

    国家自然科学基金(51308306)和天津市自然科学基金(18JCTPJC54100,14JCQNJC08400)资助.

Preparation of Ti-based catalyst and its photocatalytic decomposition performance of PH3

    Corresponding author: WANG Jingang, thunk@126.com
  • Fund Project: Supported by the National Natural Science Foundation of China(51308306)and Natural Science Foundation of Tianjin(18JCTPJC54100, 14JCQNJC08400).
  • 摘要: 通过光催化将磷化氢(PH3)分解为黄磷和氢气的技术,兼具环保效益和经济价值.采用化学镀法、化学沉淀法分别在溶胶凝胶法自制的TiO2与商品P25表面负载Ni和Fe3O4,制成钛基负载型催化剂,研究其对PH3光催化分解性能,并利用XRD、EDS、FT-IR、FESEM对催化剂的晶相结构、元素组分、表面官能团及表观形貌等进行表征和分析.结果表明,P25负载型催化剂具有良好的性能,在450℃、395 nm光照条件下,PH3分解率接近100%,光照对催化分解磷化氢具有重要协同作用,应用前景广阔.同时,验证了Ni和Fe3O4是催化剂的高效活性相,对于PH3分解至关重要.
  • 加载中
  • [1] NING P, WANG X Y, BART H J, et al. Removal of phosphorus and sulfur from yellow phosphorus off-gas by metal-modified activated carbon[J]. Journal of Cleaner Production, 2011, 19(13):1547-1552.
    [2] REN B N. Kinetics and thermodynamics of the phosphine adsorption on the modified activated carbon[J]. Frontiers of Chemical Science and Engineering, 2011, 5(2):203-208.
    [3] HSU J N, BAI H, LI S N, et al. Copper loaded on sol-gel-derived alumina adsorbents for phosphine removal[J]. Journal of the Air & Waste Management Association, 2010, 60(5):629-635.
    [4] YU Q F, NING P, YI H H, et al. Effect of preparation conditions on the property Cu/AC adsorbents for phosphine adsorption[J]. Separation Science Technology, 2012, 47(3):527-533.
    [5] YI H H, YU Q F, TANG X L, et al. Phosphine adsorption removal from yellow phosphorus tail gas over CuO-ZnO-La2O3/activated carbon[J]. Industrial & Engineering Chemistry Research, 2011, 50(7):3960-3965.
    [6] OSADA I, IMAMURA K, ISO A. Method for producing phosphoric acid of high purity:59-217609[P]. 1984.
    [7] 韩长秀,任吉丽,毕成良,等. Fe(Pd)P合金对PH3分解的催化作用[J]. 分子催化, 2009, 23(5):418-421.

    HAN C X, REN J L, BI C L, et al. The catalysis of Fe(Pd)P alloy on decomposition of PH3[J]. Journal of Molecular Catalysis, 2009, 23(5):418-421(in Chinese).

    [8] HAN C X, REN J L, TANG X J, et al. Preparation of nanometer FeCuP alloy and its application in decomposition of PH3[J]. Chinese Chemical Letters, 2007, 18(10):1285-1288.
    [9] LI L L, HAN C X, HAN X Y, et al. Catalytic decomposition of toxic chemicals over metal-promoted carbon nanotubes[J].Environmental Science & Technology, 2011, 45(2):726-731.
    [10] LI L L, HAN C X, YANG L, et al. The nature of PH3 decomposition reaction over amorphous CoNiBP alloy supported on carbon nanotubes[J].Industrial & Engineering Chemistry Research, 2010, 49(4):1658-1662.
    [11] TANG X J, LI L L, SHEN B X, et al. Halloysite-nanotubes supported FeNi alloy nanoparticles for catalytic decomposition of toxic phosphine gas into yellow phosphorus and hydrogen[J]. Chemosphere, 2013, 91(9):1368-1373.
    [12] DÉVAI I, FELFÖLDY L, WITTNER I, et al. Detection of phosphine:New aspects of the phosphorus cycle in the hydrosphere[J]. Nature, 1988, 333, 343-345.
    [13] 牛晓君,耿金菊,王晓蓉. 太湖水域PH3的时空变化特征[J]. 环境科学学报, 2004, 24(2):255-259.

    NIU X J, GENG J J, WANG X R, Temporal and spatial distributions of phosphine in Taihu Lake[J]. Acta Scientiae Circumstantiate, 2004, 24(2):255-259(in Chinese).

    [14] HANNA F, HAMID Z A, AAL A A. Controlling factors affecting the stability and rate of electroless copper plating[J]. Materials Letters, 2004, 58(1):104-109.
    [15] UYSAL M, KARSLIOGLU R, ALP A, et al. Nanostructured core-shell Ni deposition on SiC particles by alkaline electroless coating[J]. Applied Surface Science, 2011, 257(24):10601-10606.
    [16] WANG L, DUAN S H, JIN P X, et al. Anchored Cu(Ⅱ) tetra(4-carboxylphenyl)porphyrin to P25(TiO2) for efficient photocatalytic ability in CO2 reduction[J]. Applied Catalysis B:Environmental, 2018, 239(30):599-608.
    [17] KALAN R E, YAPARATNE S, AMIRBAHMAN A, et al. P25 titanium dioxide coated magnetic particles:Preparation, characterization and photocatalytic activity[J]. Applied Catalysis B:Environmental, 2016, 187:249-258.
    [18] YAMAMOTO A, TERAMURA K, HOSOKAWA S, et al. Effects of SO2 on selective catalytic reduction of NO with NH3 over a TiO2 photocatalyst[J]. Science and Technology of Advanced Materials, 2015, 16(2):1-7.
  • 加载中
计量
  • 文章访问数:  1835
  • HTML全文浏览数:  1835
  • PDF下载数:  31
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-20

钛基催化剂制备及其光分解磷化氢性能

    通讯作者: 王晋刚, E-mail: thunk@126.com
  • 1. 南开大学环境科学与工程学院, 天津市跨介质复合污染环境治理技术重点实验室, 天津, 300350;
  • 2. 河北工业大学化工学院, 天津, 300130
基金项目:

国家自然科学基金(51308306)和天津市自然科学基金(18JCTPJC54100,14JCQNJC08400)资助.

摘要: 通过光催化将磷化氢(PH3)分解为黄磷和氢气的技术,兼具环保效益和经济价值.采用化学镀法、化学沉淀法分别在溶胶凝胶法自制的TiO2与商品P25表面负载Ni和Fe3O4,制成钛基负载型催化剂,研究其对PH3光催化分解性能,并利用XRD、EDS、FT-IR、FESEM对催化剂的晶相结构、元素组分、表面官能团及表观形貌等进行表征和分析.结果表明,P25负载型催化剂具有良好的性能,在450℃、395 nm光照条件下,PH3分解率接近100%,光照对催化分解磷化氢具有重要协同作用,应用前景广阔.同时,验证了Ni和Fe3O4是催化剂的高效活性相,对于PH3分解至关重要.

English Abstract

参考文献 (18)

目录

/

返回文章
返回