Al2O3负载Pd催化剂对溴氯代乙酸的催化加氢脱卤研究

周军燕, 李明会, 孙敬雅, 郑寿荣. Al2O3负载Pd催化剂对溴氯代乙酸的催化加氢脱卤研究[J]. 环境化学, 2020, (2): 378-387. doi: 10.7524/j.issn.0254-6108.2019031107
引用本文: 周军燕, 李明会, 孙敬雅, 郑寿荣. Al2O3负载Pd催化剂对溴氯代乙酸的催化加氢脱卤研究[J]. 环境化学, 2020, (2): 378-387. doi: 10.7524/j.issn.0254-6108.2019031107
ZHOU Junyan, LI Minghui, SUN Jingya, ZHENG Shourong. Catalytic hydrodehalogenation of bromochloroacetic acid on alumina supported palladium catalysts[J]. Environmental Chemistry, 2020, (2): 378-387. doi: 10.7524/j.issn.0254-6108.2019031107
Citation: ZHOU Junyan, LI Minghui, SUN Jingya, ZHENG Shourong. Catalytic hydrodehalogenation of bromochloroacetic acid on alumina supported palladium catalysts[J]. Environmental Chemistry, 2020, (2): 378-387. doi: 10.7524/j.issn.0254-6108.2019031107

Al2O3负载Pd催化剂对溴氯代乙酸的催化加氢脱卤研究

    通讯作者: 郑寿荣, E-mail: srzheng@nju.edu.cn
  • 基金项目:

    国家自然科学基金(21577056)资助.

Catalytic hydrodehalogenation of bromochloroacetic acid on alumina supported palladium catalysts

    Corresponding author: ZHENG Shourong, srzheng@nju.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(21577056).
  • 摘要: 分别以氧化铝、氧化硅和多壁碳纳米管为载体,采用沉淀-沉积法制备负载型Pd催化剂.采用透射电镜(TEM)、X射线衍射(XRD)、电感耦合等离子体发射光谱(ICP-AES)、X射线光电子能谱(XPS)等手段对材料进行表征,并对溴氯代乙酸(BCAA)的液相催化加氢脱卤反应进行了研究.结果表明,由于Pd/Al2O3催化剂具有较高的等电点,因此相对于Pd/CNT、Pd/SiO2在BCAA的加氢脱卤反应中具有更高的活性.以Pd/Al2O3为目标催化剂,对BCAA的加氢脱卤展开研究,发现催化活性随Pd的负载量的增加而提高.当反应物的初始浓度为0.1 mmol·L-1,pH值为5.6,Pd (1.39)/Al2O3用量为25 mg·L-1时,BCAA在20 min时可以实现完全脱溴并在反应2 h后脱氯达60.5%.另外,pH的升高不利于脱卤反应的进行.当反应物的浓度从0.05 mmol·L-1提高到0.4 mmol·L-1时,反应初活性从1.55 mmol·L-1 min-1 gCat-1提高到8.37 mmol·L-1 min-1 gCat-1.进一步通过拟合Langumir-Hinshelwood模型,相关系数达到0.97,说明BCAA的加氢脱卤是吸附控制机制.催化过程中溴氯代乙酸的脱溴和脱氯具有协同作用,反应最终生成乙酸.
  • 加载中
  • [1] HUA G, RECKHOW D A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants[J]. Water Research, 2007, 41(8):1667-1678.
    [2] 中华人民共和国卫生部国家标准化管理委员会. 生活饮用水卫生标准:GB 5749-2006[S]. 北京:中国标准出版社,2006:6. Ministry of Health of the P. R. China. Sanitary Standards for Drinking Water:GB 5749-2006[S]. Beijing:China Standard Press, 2006

    :6(in Chinese)

    [3] US EPA. National primary drinking water regulations:Stage 2 disinfectants and disinfection byproducts rule:Final 562 rule[J]. Federal Register, 2006, 71(2):388-493.
    [4] DEANGELO A, JONES C, MOYER M. Development of normal human colon cell cultures to identify priority unregulated disinfection by-products with a carcinogenic potential[J]. Water Science and Technology, 2007, 56(12):51-55.
    [5] KLINEFELTER G R, STRADER L F, SUAREZ J D, et al. Bromochloroacetic acid exerts qualitative effects on rat sperm:Implications for a novel biomarker[J]. Toxicological Sciences, 2002, 68(1):164-173.
    [6] PROGRAM N T. Toxicology and carcinogenesis studies of bromochloroacetic acid (CAS No. 5589-96-8) in F344/N rats and B6C3F1 mice (drinking water studies)[J]. National Toxicology Program Technical Report Series, 2009, 549:1-269.
    [7] CHEN KC, WANG YH, CHANG YH. Using catalytic ozonation and biofiltration to decrease the formation of disinfection by-products[J]. Desalination, 2009, 249(3):929-935.
    [8] TANG S, WANG XM, YANG HW, et al. Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation[J]. Chemosphere, 2013, 90(4):1563-1567.
    [9] XIA C, LIU Y, ZHOU S, et al. The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions:A promising approach to practical use in wastewater[J]. Journal of Hazardous materials, 2009, 169(1-3):1029-1033.
    [10] GóMEZ-QUERO S, CáRDENAS-LIZANA F, KEANE M A. Effect of metal dispersion on the liquid-phase hydrodechlorination of 2,4-Dichlorophenol over Pd/Al2O3[J]. Industrial & Engineering Chemistry Research, 2008, 47(18):6841-6853.
    [11] WU K, ZHENG M, HAN Y, et al. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts[J]. Applied Surface Science, 2016, 376:113-120.
    [12] ZHOU J, HAN Y, WANG W, et al. Reductive removal of chloroacetic acids by catalytic hydrodechlorination over Pd/ZrO2 catalysts[J]. Applied Catalysis B:Environmental, 2013, 134:222-230.
    [13] CHEN H, XU Z, WAN H, et al. Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts[J]. Applied Catalysis B:Environmental, 2010, 96(3-4):307-313.
    [14] TOYOSHIMA I, SOMORJAI G A. Heats of Chemisorption of O2, H2, CO, CO2, and N2 on polycrystalline and single crystal transition metal surfaces[J]. Catalysis Reviews, 1979, 19(1):105-159.
    [15] YUAN G, KEANE M A. Aqueous-phase hydrodechlorination of 2, 4-dichlorophenol over Pd/Al2O3:Reaction under controlled pH[J]. Industrial & Engineering Chemistry Research, 2007, 46(3):705-715.
    [16] HOKE J B, GRAMICCIONI G A, BALKO E N. Catalytic hydrodechlorination of chlorophenols[J]. Applied Catalysis B Environmental, 1992, 1(4):285-296.
    [17] HOU PX, LIU C, CHENG HM. Purification of carbon nanotubes[J]. Carbon, 2008, 46(15):2003-2025.
    [18] LI M, HE J, TANG Y, et al. Liquid phase catalytic hydrogenation reduction of Cr(Ⅵ) using highly stable and active Pd/CNT catalysts coated by N-doped carbon[J]. Chemosphere, 2019, 217:742-753.
    [19] AMORIM C, YUAN G, PATTERSON P M, et al. Catalytic hydrodechlorination over Pd supported on amorphous and structured carbon[J]. Journal of Catalysis, 2005, 234(2):268-281.
    [20] BOURIKAS K, VAKROS J, KORDULIS C, et al. Potentiometric mass titrations:Experimental and theoretical establishment of a new technique for determining the point of zero charge (PZC) of metal (hydr) oxides[J]. The Journal of Physical Chemistry B, 2003, 107(35):9441-9451.
    [21] BALDERAS-HERNANDEZ P, IBANEZ J G, GODINEZ-RAMIREZ J J, et al. Microscale environmental chemistry:Part 7. Estimation of the Point of Zero Charge (pzc) for simple metal oxides by a simplified potentiometric mass titration method[J]. The Chemical Educator, 2006, 11:267-270.
    [22] CHEN J, CHEN Q, MA Q. Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes[J]. Journal of Colloid and Interface Science, 2012, 370(1):32-38.
    [23] KONG F X, YANG H W, WANG X M, et al. Rejection of nine haloacetic acids and coupled reverse draw solute permeation in forward osmosis[J]. Desalination, 2014, 341:1-9.
  • 加载中
计量
  • 文章访问数:  1866
  • HTML全文浏览数:  1866
  • PDF下载数:  45
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-11

Al2O3负载Pd催化剂对溴氯代乙酸的催化加氢脱卤研究

    通讯作者: 郑寿荣, E-mail: srzheng@nju.edu.cn
  • 污染控制与资源化研究国家重点实验室, 南京大学环境学院, 南京, 210046
基金项目:

国家自然科学基金(21577056)资助.

摘要: 分别以氧化铝、氧化硅和多壁碳纳米管为载体,采用沉淀-沉积法制备负载型Pd催化剂.采用透射电镜(TEM)、X射线衍射(XRD)、电感耦合等离子体发射光谱(ICP-AES)、X射线光电子能谱(XPS)等手段对材料进行表征,并对溴氯代乙酸(BCAA)的液相催化加氢脱卤反应进行了研究.结果表明,由于Pd/Al2O3催化剂具有较高的等电点,因此相对于Pd/CNT、Pd/SiO2在BCAA的加氢脱卤反应中具有更高的活性.以Pd/Al2O3为目标催化剂,对BCAA的加氢脱卤展开研究,发现催化活性随Pd的负载量的增加而提高.当反应物的初始浓度为0.1 mmol·L-1,pH值为5.6,Pd (1.39)/Al2O3用量为25 mg·L-1时,BCAA在20 min时可以实现完全脱溴并在反应2 h后脱氯达60.5%.另外,pH的升高不利于脱卤反应的进行.当反应物的浓度从0.05 mmol·L-1提高到0.4 mmol·L-1时,反应初活性从1.55 mmol·L-1 min-1 gCat-1提高到8.37 mmol·L-1 min-1 gCat-1.进一步通过拟合Langumir-Hinshelwood模型,相关系数达到0.97,说明BCAA的加氢脱卤是吸附控制机制.催化过程中溴氯代乙酸的脱溴和脱氯具有协同作用,反应最终生成乙酸.

English Abstract

参考文献 (23)

目录

/

返回文章
返回