大气颗粒物中环境持久性自由基的电子顺磁共振检测方法
Detection of environmentally persistent free radicals in atmospheric particulate matter by electron paramagnetic resonance
-
摘要: 大气颗粒物中的环境持久性自由基具有强氧化性,参与大气中诸多化学反应,影响空气质量,进而影响人体健康,因此对其定性、定量检测具有重要意义,然而现阶段并没有成熟有效的分析检测方法.本文利用电子顺磁共振波谱仪,对比大气颗粒物的3种进样方式,建立了便捷、有效的大气颗粒物中环境持久性自由基检测方法.首先,配制不同标准物质(或溶液),确定仪器的最佳检测参数和大气颗粒物的最低响应浓度(或质量).然后,分别使用水洗脱法和有机溶剂提取法对大气颗粒物进行前处理,优化大气颗粒物的水洗脱和有机提取条件,对比大气颗粒物直接进样、水洗脱样和有机提取样的测定结果.最后,确定了上述3种进样方法的适用条件,即直接检测法适用于石英膜和Teflon膜样品,且操作简便,易于定量测定大气颗粒物中自由基的浓度;水洗脱法仅适用于Teflon膜样品,但需要已知颗粒物洗脱效率才能定量计算;有机溶剂提取法不能有效的提取的颗粒物上的自由基.Abstract: Due to their high oxidation potentials, environmentally persistent free radicals (EPFRs) in particulate matter (PM) can widely participate in atmospheric chemical reactions, leading to adverse effects on air quality and human health. While it is critical to develop a comprehensive understanding of EPFRs' role on these effects significant research gaps still exists due to limitations of analytical methods on EPFRs. To this end, a method for improved detection EPFRs in PM was developed by utilizing electron paramagnetic resonance (EPR) analysis of the extracted solutions using either deionized water or organic solvents. Multipoint calibration using standard solution was conducted to the instrument. Then, a series of experiments were carried out to derive optimal conditions of the solution extractions of the filter samples, which included sonication time, solvent type and concentration etc. The optimal instrument operation conditions for EPR analysis of the different types of samples were determined. The results indicated that using PM filter (quartz or TeflonTM) samples for EPFRs analysis through EPR was the best for both qualification and quantification purposes. On the other hand, it was challenging to quantify EPFRs through EPR analysis using solvent extraction from PM filter samples without knowing the extraction efficiency. The experiment results also showed that water elution method is only applicable to TeflonTM filter samples, while organic solvents didn't seem to be efficient in extracting the EPFRs from filter samples at all.
-
-
[1] DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proc Combust Inst, 2007, 31(1):521-528. [2] VEJERANO E P, RAO G, KHACHATRYAN L, et al. Environmentally persistent free radicals:Insights on a new class of pollutants[J]. Environ Sci Technol, 2018, 52(5):2468-2481. [3] 唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 第二版. 北京:高等教育出版社, 2006. TANG X Y, ZHANG Y H, SHAO M, et al. Atmospheric environmental chemistry[M].The Second Edition. Beijinng:Higher Education Press, 2006(in Chinese). [4] KIM S, GUENTHER A, LEFER B, et al. Potential role of stabilized criegee radicals in sulfuric acid production in a high biogenic VOC environment[J]. Environ Sci Technol, 2015, 49(6):3383-3391. [5] SHIRAIWA M, SELZLE K, POSCHL U. Hazardous components and health effects of atmospheric aerosol particles:Reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins[J]. Free Radic Res, 2012, 46(8):927-939. [6] DUGAS T R, LOMNICKI S, CORMIER S A, et al. Addressing emerging risks:Scientific and regulatory challenges associated with environmentally persistent free radicals[J]. Int J Environ Res Public Health, 2016, 13(6):1-17. [7] CHEN Q C, WANG M M, SUN H Y, et al. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China[J]. Environ Int, 2018, 121(Pt 1):260-268. [8] DAVIES M J. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods[J]. Methods, 2016, 109:21-30. [9] GIORIO C, CAMPBELL S J, BRUSCHI M, et al. Detection and identification of criegee intermediates from the ozonolysis of biogenic and anthropogenic VOCs:Comparison between experimental measurements and theoretical calculations[J]. Faraday Discuss, 2017, 200:559-578. [10] GIORIO C, CAMPBELL S J, BRUSCHI M, et al. Online quantification of criegee intermediates of alpha-pinene ozonolysis by stabilization with spin traps and proton-transfer reaction mass spectrometry detection[J]. J Am Chem Soc, 2017, 139(11):3999-4008. [11] 卢景雰. 现代电子顺磁共振波谱学及其应用[M]. 北京:北京大学医学出版社, 2012. LU J F. Advanced electron paramegnetic resonance spectroscopy and its applications[M]. Beijing:Peking University Medical Press, 2012(in Chinese). [12] GOEL R, DURAND E, TRUSHIN N, et al. Highly reactive free radicals in electronic cigarette aerosols[J]. Chem Res Toxicol, 2015, 28(9):1675-1677. [13] YANG L L, LIU G R, ZHENG M H, et al. Highly Elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere[J]. Environ Sci Technol, 2017, 51(14):7936-7944. [14] 郑祥民, 沈冶, 周立旻, 等. 城市大气颗粒物表面半醌自由基的测定方法[J]. 中国环境监测, 2014, 30(1):125-128. ZHENG X M, SHEN Y, ZHOU L M, et al. Study of determination method of semiquinone radicals in urban atmospheric particles[J]. Environmental Monitoring in China, 2014. 30(1):125-128(in Chinese).
[15] 卢超, 郑祥民, 周立旻, 等. 城市大气颗粒物表面半醌自由基的测定及特征分析[J]. 环境化学, 2013, 32(1):1-6. LU C, ZHENG X M, ZHOU L M, et al. Measurements and characteristics of semiquinone radicals in urban atmospheric particles[J]. Eevironmental Chemistry, 2013, 32(1):1-6(in Chinese).
[16] TRUONG H, LOMNICKI S, DELLINGER B. Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter[J]. Environ Sci Technol, 2010, 44(6):1933-1939. [17] CHEN Q C, SUN H Y, WANG M M, et al. Dominant fraction of EPFRs from nonsolvent-extractable organic matter in fine particulates over Xi'an, China[J]. Environ Sci Technol, 2018, 52(17):9646-9655. [18] VALAVANIDIS A, FIOTAKIS K, VLAHOGIANNI T, et al. Corrigendum to:Determination of selective quinones and quinoid radicals in airborne particulate matter and vehicular exhaust particles[J]. Environmental Chemistry, 2006, 3(3):118-123. [19] VALAVANIDIS A, FIOTAKIS K, BAKEAS E, et al. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter[J]. Redox Rep, 2005, 10(1):37-51. [20] GEHLING W, KHACHATRYAN L, DELLINGER B. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5[J]. Environ Sci Technol, 2014, 48(8):4266-4272. [21] GEHLING W, DELLINGER B. Environmentally persistent free radicals and their lifetimes in PM2.5[J]. Environ Sci Technol, 2013, 47(15):8172-8178. [22] CHEN Q C, WANG M M, WANG Y Q, et al. Rapid determination of environmentally persistent free radicals (EPFRs) in atmospheric particles with a quartz sheet-based approach using electron paramagnetic resonance (EPR) spectroscopy[J]. Atmospheric Environment, 2018, 184:140-145. [23] 孙浩堯, 陈庆彩, 牟臻, 等. 西安地区PM2.5中环境持久性自由基(EPFRs)性质及来源研究[J]. 环境科学学报, 2019, 39(1):197-203. SUN H Y, CHEN Q C, MU Z, et al. Study on the properties and sources of environmental persistent free radicals (EPFRs) in PM2.5 in Xi'an[J]. Acta Scientiae Circumstantiae, 2019, 39(1):197-203(in Chinese).
[24] DELLINGER B, KHACHATRYAN L, MASKO S, et al. Free radicals in tobacco smoke[J]. Mini-Reviews in Organic Chemistry, 2011, 8(4):427-433. [25] WOOTEN J B. Gas-phase radicals in cigarette smoke:A re-evaluation of the steady-state model and the cambridge filter pad[J]. Mini-Reviews in Organic Chemistry, 2011, 8(4):412-426. [26] YU L X, DZIKOVSKI B G, FREED J H. A protocol for detecting and scavenging gas-phase free radicals in mainstream cigarette smoke[J]. J Vis Exp, 2012, 59(e3406):1-5. [27] JAKOBER C, RIDDLE S, ROBERT M, et al. Quinone emissions from gasoline and diesel motor vehicles[J]. Environ Sci Technol, 2007, 41(13):4548-4554. [28] KIRURI L W, DELLINGER B, LOMNICKI S. Tar balls from deep water horizon oil spill:Environmentally persistent free radicals (EPFR) formation during crude weathering[J]. Environ Sci Technol, 2013, 47(9):4220-4226. [29] BARTALIS J, ZHAO Y-L, FLORA J W, et al. Carbon-centered radicals in cigarette smoke:Acyl and Alkylaminocarbonyl Radicals[J]. Anal Chem, 2009, 81(2):631-641. [30] DELLINGER B, PRYOR W A, CUETO R, et al. The role of combustion-generated radicals in the toxicity of PM2.5[J]. Proceedings of the Combustion Institute, 2000, 28:2675-2681. [31] BORROWMAN C K, ZHOU S, BURROW T E, et al. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds[J]. Phys Chem Chem Phys, 2016, 18(1):205-212. -

计量
- 文章访问数: 3852
- HTML全文浏览数: 3852
- PDF下载数: 196
- 施引文献: 0