光化学反应中自由基的作用及反应影响因素的研究进展
Research progress on the influencing factors and the role of free radicals in photochemistry reaction
-
摘要: 自由基是对流层大气光化学反应的重要组成部分,光化学反应过程中不同的自由基扮演着不同的角色.本文综述了大气中常见的·OH、HO2··、RO·、RO2·、NO3·和环境持久性自由基等自由基的来源,在光化学反应中的作用,以及关键影响因素,展望了未来对于自由基在光化学反应中的研究方向.这对于理解大气氧化性和自由基在光化学反应中的作用机理等核心科学问题具有重要的意义.Abstract: Free radicals, as a type of essential components of troposphere atmosphere, play different roles in photochemical reaction, owing to their diverse properties, and has gained heightened interests in recent years. The review attempted to summarize the sources of·OH, HO2·, RO·, RO2·, NO3·and environmental persistent free radicals in the atmosphere, their function in photochemical reactions, as well as the key influencing factors. Besides, the potential promising research directions of free radicals in photochemical reactions were proposed simultaneously. Consequently, the work was of immense significance to gain comprehensive insights into the core scientific issues pertaining to atmospheric oxidative capability and the reaction mechanism of free radicals in photochemical reactions.
-
Key words:
- Free radicals /
- atmospheric photochemical reactions /
- sources /
- effects /
- influencing factors
-
-
[1] 左明辉. 大气和星际化学中几种重要自由基反应机理的理论研究[D]. 长春:吉林大学, 2009. ZUO M H. Theoretical studies on the reactions of several important radicals systems in atmosphere and interstellar chemistry[D]. Changchun:Jilin University, 2009(in Chinese). [2] 贾世铭, 田浩杞, 刘艳蓉, 等. 大气环境中自由基检测方法研究[C]. 第21届全国色谱学术报告会及仪器展览会, 2017:2. JIA S M, TIAN H Q, LIU Y R, et al. Study on free radical detection in atmospheric environment[C]. The 21st National Chromatography Academic Conference and Instrument Exhibition, 2017:2 (in Chinese).
[3] JIA H, ZHAO S, NULAJI G, et al. Environmentally persistent free radicals in soils of past coking sites:Distribution and stabilization[J]. Environmental Science & Technology, 2017, 51(11):6000-6008. [4] JIA H, NULAJI G, GAO H, et al. formation and stabilization of environmentally persistent free radicals induced by the interaction of anthracene with Fe(Ⅲ)-modified clays[J]. Environmental Science & Technology, 2016, 50(12):6310-6319. [5] MASKOS Z, KHACHATRYAN L, DELLINGER B. Precursors of radicals in tobacco smoke and the role of particulate matter in forming and stabilizing radicals[J]. Energy & Fuels, 2005, 19(6):2466-2473. [6] DELLINGER B, PRYOR W A, CUETO R, et al. Role of free radicals in the toxicity of airborne fine particulate matter[J]. Chemical Research in Toxicology, 2001, 14(10):1371-1377. [7] KHACHATRYAN L, DELLINGER B. Environmentally persistent free radicals (EPFRs)-2. are free hydroxyl radicals generated in aqueous solutions[J]. Environmental Science & Technology, 2011, 45(21):9232-9239. [8] KHACHATRYAN L, VEJERANO E, LOMNICKI S, et al. Environmentally persistent free radicals (EPFRs). 1. generation of reactive oxygen species in aqueous solutions[J]. Environmental Science & Technology, 2011, 45(19):8559-8566. [9] CHEN Q, SUN H, WANG M, et al. Dominant fraction of epfrs from nonsolvent-extractable organic matter in fine particulates over Xi'an, China[J]. Environmental Science & Technology, 2018, 52(17):9646-9655. [10] OZTURK B, YILMAZ D. Absorptive removal of volatile organic compounds from flue gas streams[J]. Process Safety and Environmental Protection, 2006, 84(5):391-398. [11] LAKSHMANAN P, DELANNOY L, RICHARD V, et al. Total oxidation of propene over Au/xCeO2-Al2O3 catalysts:Influence of the CeO2 loading and the activation treatment[J]. Applied Catalysis B:Environmental, 2010, 96(1):117-125. [12] DOGALI P, TERAOKA Y, MUNGSE P, et al. Combustion of volatile organic compounds over Cu-Mn based mixed oxide type catalysts supported on mesoporous Al2O3, TiO2 and ZrO2[J]. Journal of Molecular Catalysis A:Chemical, 2012, 358:23-30. [13] YOSFI L, HAGHIGHI M, ALLAHYARI S, et al. Abatement of toluene from polluted air over Mn-CeO2 nanopowder:Impregnation vs. ultrasound assisted synthesis with various Mn-loading[J]. Advanced Powder Technology, 2015, 26(2):602-611. [14] MIRANDA-TRVINO J C, COLES C A. Kaolinite properties, structure and influence of metal retention on pH[J]. Applied Clay Science, 2003, 23(1):133-139. [15] SOYLU G S P, ÖZÇELIK Z, BOZ. Total oxidation of toluene over metal oxides supported on a natural clinoptilolite-type zeolite[J]. Chemical Engineering Journal, 2010, 162(1):380-387. [16] ZHOU J, YOU Y, BAI Z, et al. Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China[J]. Science of the Total Environment, 2011, 409(3):452-459. [17] RAMÍREZ N, CUADRAS A, ROVIRA E, et al. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site[J]. Environment International, 2012, 39(1):200-209. [18] SINGH D, KUMAR A, KUMAR K, et al. Statistical modeling of O3, NOx, CO, PM2.5, VOCs and noise levels in commercial complex and associated health risk assessment in an academic institution[J]. Science of The Total Environment, 2016, 572:586-594. [19] TUET W Y, CHEN Y, XU L, et al. Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds[J]. Atmos. Chem. Phys., 2017, 17(2):839-853. [20] GHUDE S D, JAIN S L, ARYA B C, et al. Ozone in ambient air at a tropical megacity, Delhi:Characteristics, trends and cumulative ozone exposure indices[J]. Journal of Atmospheric Chemistry, 2008, 60(3):237-252. [21] MURPHY J G, ORAM D E, REEVES C E. Measurements of volatile organic compounds over West Africa[J]. Atmos. Chem. Phys., 2010, 10(12):5281-5294. [22] HUNG G, BROOK R, CRIPPA M, et al. Speciation of anthropogenic emissions of non-methane volatile organic compounds:A global gridded data set for 1970-2012[J]. Atmos. Chem. Phys., 2017, 17(12):7683-7701. [23] STONE D, WHALLEY L, HEARD D. Tropospheric·OH and HO2·radicals:Field measurements and model comparisons[M]. Chem. Soc. Rev., 2012:6348-6404. [24] XUE L, GU R, WANG T, et al. Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region:Analysis of a severe photochemical smog episode[J]. Atmos. Chem. Phys., 2016, 16(15):9891-9903. [25] 董文博, 黄丽, 房豪杰, 等. 夜间大气中NO3自由基与联苯的反应研究[C]. 持久性有机污染物论坛2006暨第一届持久性有机污染物全国学术研讨会, 2006:4. DONG W B, HUANG L, FANG H J, et al. Study on the reaction of NO3 radical and biphenyl in atmosphere at night[C]. Persistent Organic Pollutants Forum 2006 and the First National Symposium on Persistent Organic Pollutants, 2006 :4(in Chinese).
[26] 贾龙, 葛茂发, 庄国顺, 等. 对流层夜间化学研究[J]. 化学进展, 2006, 18(7):1034-1040. JIA L, GE M F, ZHUANG G S, et al. Advances in tropospheric night-time chemistry[J]. Progress in Chemistry, 2006, 18(7):1034-1040(in Chinese).
[27] 何益良, 王黎明. α-蒎烯大气化学反应的研究进展[J]. 化学研究, 2008, 19(2):97-101. HE Y L, WANG L M. Review on atmospheric chemistry of α-Pinene[J]. Chemical Research, 2008, 19(2):97-101(in Chinese).
[28] TUAZON E C, ALVARADO A, ASCHMANN S M, et al. Products of the gas-phase reactions of 1,3-butadiene with·OH and NO3 radicals[J]. Environmental Science & Technology, 1999, 33(20):3586-3595. [29] AMEDRO D, PARKER A E, SCHOEMAECKEER C, et al. HOx and ROx radicals in atmospheric chemistry[C]. Disposal of Dangerous Chemicals in Urban Areas and Mega Cities, 2013:77-92. [30] 李晓倩, 陆克定, 魏永杰, 等. 对流层大气过氧自由基实地测量的技术进展及其在化学机理研究中的应用[J]. 化学进展, 2014, 26(4):682-694. LI X Q, LU K D, WEI Y J, et al. Technique progress and chemical mechanism research of troposphere peroxy radical in field measurement[J]. Progress in Chemistry, 2014, 26(4):682-694(in Chinese).
[31] MALKIN T L, GODDARD A, HEARD D E, et al. Measurements of·OH and HO2·yields from the gas phase ozonolysis of isoprene[J]. Atmos. Chem. Phys., 2010, 10(3):1441-1459. [32] KWAN A J, CHAN A W H, NG N L, et al. Peroxy radical chemistry and·OH radical production during the NO3 initiated oxidation of isoprene[J]. Atmos. Chem. Phys., 2012, 12(16):7499-7515. [33] ATKINSON R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions[J]. Chemical Reviews, 1986, 86(1):69-201. [34] 王丹, 谢品华, 胡仁志, 等. 大气环境NO3自由基探测技术研究进展[J]. 大气与环境光学学报, 2015, 10(2):102-116. WANG D, XIE P H, HU R Z, et al. Progress of measurement of atmospheric NO3 Radicals[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2):102-116(in Chinese).
[35] SHEEHY P M, VOLKAMER R, MOLINA L T, et al. Oxidative capacity of the mexico city atmosphere-Part 2:A ROx radical cycling perspective[J]. Atmospheric Chemistry and Physics, 2010, 10(14):6993-7008. [36] 王赛男. 大气化学中过氧自由基的单分子反应[D]. 广州:华南理工大学, 2018. WANG S N. Unimolecular reactions of peroxy radicals in atmospheric chemistry[D]. Guangzhou:South China University of Technology, 2018(in Chinese). [37] CROUNSE J D, NIELSEN L B, JORGENSEN S, et al. Autoxidation of organic compounds in the atmosphere[J]. Journal of Physical Chemistry Letters, 2013, 4(20):3513-3520. [38] DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute, 2007, 31(1):521-528. [39] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12):4605-4638. [40] ATKINSON R. Atmospheric chemistry of VOCs and NOx[J]. Atmospheric Environment, 2000, 34(12):2063-2101. [41] KRAMP F, PAULSO S E. The gas phase reaction of ozone with 1,3-butadiene:Formation yields of some toxic products[J]. Atmospheric Environment, 2000, 34(1):35-43. [42] GHOSH B, PARK J, ANDERSON K C, et al.·OH initiated oxidation of 1,3-butadiene in the presence of O2 and NO[J]. Chemical Physics Letters, 2010, 494(1):8-13. [43] BONN B, LAWRENCE M G. Influence of biogenic secondary organic aerosol formation approaches on atmospheric chemistry[J]. Journal of Atmospheric Chemistry, 2005, 51(3):235-270. [44] 李黎. 天然源二次气溶胶组成、分布以及来源研究[D]. 上海:上海大学, 2009. LI L. Composition, distribution and sources of biogenic secondary aerosols[D]. Shanghai:Shanghai University, 2009(in Chinese). [45] PAULOT F, HENZE D K, WENNBERG P O. Impact of the isoprene photochemical cascade on tropical ozone[J]. Atmos. Chem. Phys., 2012, 12(3):1307-1325. [46] WENNBERG P O, BATES K H, CROUNSE J D, et al. Gas-phase reactions of isoprene and its major oxidation products[J]. Chemical Reviews, 2018, 118(7):3337-3390. [47] LEE W, BAASANDORJ M, STEVENS P S, et al. Monitoring·OH-initiated oxidation kinetics of isoprene and its products using online mass spectrometry[J]. Environmental Science & Technology, 2005, 39(4):1030-1036. [48] GÓMEZ A E, VIIDANOJA J, MUÑOZ A, et al. Experimental confirmation of the dicarbonyl route in the photo-oxidation of toluene and benzene[J]. Environmental Science & Technology, 2007, 41(24):8362-8369. [49] NISHINO N, ATKINSON R, AREY J. Formation of nitro products from the gas-phase·OH radical-initiated reactions of toluene, naphthalene, and biphenyl:Effect of NO2 concentration[J]. Environmental Science & Technology, 2008, 42(24):9203-9209. [50] BALTARETU C O, LICHTMAN E I, HADLER A B, et al. Primary atmospheric oxidation mechanism for toluene[J]. The Journal of Physical Chemistry A, 2009, 113(1):221-230. [51] AREY J, OBERMEYER G, ASCHMANN S M, et al. Dicarbonyl products of the·OH radical-initiated reaction of a series of aromatic hydrocarbons[J]. Environmental Science & Technology, 2009, 43(3):683-689. [52] BIRDSALL A W, ELROD M J. Comprehensive NO dependent study of the products of the oxidation of atmospherically relevant aromatic compounds[J]. The Journal of Physical Chemistry A, 2011, 115(21):5397-5407. [53] ELROD M J. Kinetics study of the aromatic bicyclic peroxy radical + NO reaction:Overall rate constant and nitrate product yield measurements[J]. The Journal of Physical Chemistry A, 2011, 115(28):8125-8130. [54] LIU Y L, LI Q Q, SU G J, et al. Photochemical conversion of toluene in simulated atmospheric matrix and characterization of large molecular weight products by +APPI FT-ICR MS[J]. Science of the Total Environment, 2019, 649:111-119. [55] WU R, PAN S, LI Y, et al. Atmospheric oxidation mechanism of toluene[J]. The Journal of Physical Chemistry A, 2014, 118(25):4533-4547. [56] CHERAMANGALATH B R, RAJAKUMAR B. Photo-oxidation reaction kinetics and mechanistics of 4-hydroxy-2-butanone with Cl atoms and·OH radicals in the gas phase[J]. The Journal of Physical Chemistry A, 2019, 123(20):4342-4353 [57] CARLIER P, HANNACHI H, MOUVIER G. The chemistry of carbonyl compounds in the atmosphere-A review[J]. Atmospheric Environment, 1986, 20(11):2079-2099. [58] 刘灿. 珠三角大气·OH自由基及其对挥发性羰基化合物的去除作用[D]. 广州:暨南大学, 2009. LIU C. The Study on the·OH radicals and the removal of volatile carbonyls in atmosphere of the pearl river delta[D]. Guangzhou:Jinan University, 2009(in Chinese). [59] ORLANDO J J, TYNDALL G S. Laboratory studies of organic peroxy radical chemistry:An overview with emphasis on recent issues of atmospheric significance[J]. Chemical Society Reviews, 2012, 41(19):6294-6317. [60] BIRDSALL A W, ANDREONI J F, ELROD M J. Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene[J]. The Journal of Physical Chemistry A, 2010, 114(39):10655-10663. [61] 马咏梅. 苯酚与NO3自由基气相加成反应机理的研究[J]. 化学与生物工程, 2018, 35(12):24-26. MA Y M. Reaction mechanism of gas-phase addition of phenol and NO3 free radical[J]. Chemisyry & Bioengineering, 2018, 35(12):24-26(in Chinese).
[62] 盖艳波, 葛茂发, 王炜罡. NO3自由基与3种环醚的大气化学反应动力学研究[J]. 环境科学, 2011, 32(12):3593-3598. GAI Y B, GE M F, WANG W G. Kinetic studies on the gas-phase reactions of NO3 radicals with three cyclic ethers[J]. Environmental science, 2011, 32(12):3593-3598(in Chinese).
[63] NAKANO Y, MATSUDA S, ISHIWATA T. Kinetics and mechanism of the gas-phase reaction of nitrate radical with phenol[J]. Reaction Kinetics, Mechanisms and Catalysis, 2016, 118(2):349-363. [64] GOUR N K, SARMA P J, MISHRA B K, et al. Night-time reaction of 2-chloroethyl methyl ether (CH3OCH2CH2Cl) initiated by NO3 radical:A theoretical insight[J]. Computational and Theoretical Chemistry, 2017, 1110:1-7. [65] CAO H, LI X, HE M, et al. Computational study on the mechanism and kinetics of NO3 initiated atmosphere oxidation of vinyl acetate[J]. Computational and Theoretical Chemistry, 2018, 1144:18-25. [66] BERNDT T, SCHOLZ W, MENTLER B, et al. Accretion product formation from self- and cross-reactions of RO2 radicals in the atmosphere[J]. Angewandte Chemie International Edition, 2018, 57(14):3820-3824. [67] CROUNSE J D, NIELSEN L B, JØRGENSENRGENSEN S, et al. Autoxidation of organic compounds in the atmosphere[J]. The Journal of Physical Chemistry Letters, 2013, 4(20):3513-3520. [68] PRASKE E, OTKJÆR R V, CROUNSE J D, et al. Intramolecular hydrogen shift chemistry of hydroperoxy-substituted peroxy radicals[J]. The Journal of Physical Chemistry A, 2019, 123(2):590-600. [69] GEHLING W, KHACHATRYAN L, DELLINGER B. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5[J]. Environmental Science & Technology, 2014, 48(8):4266-4272. [70] 杨闻达, 程鹏, 田智林, 等. 广州市夏秋季HONO污染特征及白天未知源分析[J]. 中国环境科学, 2017, 37(6):2029-2039. YANG W D, CHENG P, TIAN Z L, et al. Study on HONO pollution characteristics and daytime unknown sources during summer and autumn in Guangzhou, China[J]. China Environmental Science, 2017, 37(6):2029-2039(in Chinese).
[71] 岳玎利, 钟流举, 沈劲, 等. 珠三角地区秋季HNO2污染特性及其对·OH自由基的影响[J]. 环境科学与技术, 2016, 39(2):162-166. YUE D L, ZHONG L J, SHEN J, et al. Pollution properties of atmospheric HNO2 and its effect on·OH radical formation in the PRD region in autumn[J]. Environmental Science & Technology, 2016, 39(2):162-166(in Chinese).
[72] BROWN S S, STUTZ J. Nighttime radical observations and chemistry[J]. Chemical Society Reviews, 2012, 41(19):6405-6447. [73] LEI X, WANG W, CAI J, et al. Atmospheric chemistry of enols:Vinyl alcohol +·OH + O2 reaction revisited[J]. The Journal of Physical Chemistry A, 2019, 123(14):3205-3213. [74] COMETTO P M, DALMASSO P R, TACCONE R L A, et al. Rate coefficients for the reaction of·OH with a series of unsaturated alcohol between 263 and 371 K[J]. The Journal of Physical Chemistry A, 2008, 112(19):4444-4450. [75] STUTZ J, ALICKE B, ACKERMANN R, et al. Relative humidity dependence of HONO chemistry in urban areas[J]. Journal of Geophysical Research-Atmospheres, 2004, 109(D3):D03307. [76] HEALY R M, TEMIME B, KUPROVSKYTE K, et al. Effect of relative humidity on gas/particle partitioning and aerosol mass yield in the photooxidation of p-xylene[J]. Environmental Science & Technology, 2009, 43(6):1884-1889. [77] HU G, XU Y, JIA L. Effects of relative humidity on the characterization of a photochemical smog chamber[J]. Journal of Environmental Sciences, 2011, 23(12):2013-2018. [78] 石玉珍, 徐永福, 贾龙. 大气化学机理的发展及应用[J]. 气候与环境研究, 2012, 17(1):112-124. SHI Y Z, XU Y F, JIA L. Development and application of atmospheric chemical mechanisms[J]. Climatic and Environmental Research, 2012, 17(1):112-124(in Chinese).
-

计量
- 文章访问数: 7223
- HTML全文浏览数: 7223
- PDF下载数: 309
- 施引文献: 0