电化学开关表面活性剂对芘的可逆增溶作用
Reversible solubilization of pyrene by an electrochemically switchable surfactant
-
摘要: 表面活性剂增强修复技术(SER)是目前行之有效的有机污染土壤修复技术,但SER技术存在表面活性剂与污染物分离困难、易导致二次污染、成本高等问题.基于此,提出采用具有电化学开关特性的表面活性剂(N,N-二甲基二茂铁甲基十二烷基溴化铵,Fc12)代替SER技术中的常规表面活性剂,发展基于开关表面活性剂的可逆增强修复技术(RSER).选取芘作为目标物,研究了Fc12在氧化和还原态对芘的增溶作用以及常见环境因素,如pH和温度对Fc12可逆增溶的影响.结果表明,相对于氧化态Fc12,还原态Fc12在其临界胶束浓度(CMC)以上时对芘表现出显著的增溶作用,且增溶能力随表面活性剂浓度增大而增强.温度对Fc12的增溶作用影响显著,例如,还原态Fc12在浓度为3 mmol·L-1、25℃条件下时,芘的表观溶解度为0.779 mg·L-1,当温度增加到40℃时,芘的表观溶解度为0.971 mg·L-1,其表观溶解度增加了24.6%;但氧化态条件下,芘的表观溶解度仅增加了6.5%;芘的解吸率(芘在还原和氧化态Fc12的表观溶解度差值与还原态Fc12增溶芘的比值)由63.67%增加到71.27%.pH也显著影响Fc12的增溶,当pH值在6-10范围变化时,还原态Fc12的增溶作用呈现先增加后减小的趋势,且在pH 9附近增溶能力最强,而pH 8时芘的解吸果最好.Abstract: Surfactant enhanced remediation (SER) is currently an effective remediation technology for organic contaminated soil. However, traditional SER technology has many drawbacks in the separation of surfactants from contaminants, which may easily cause secondary pollution and high cost. The purpose of this study was to develop a reversible surfactant-enhanced remediation technology (RSER) using a surfactant (N,N-dimethylferrocenylmethyldodecyl ammonium bromide, Fc12) with electrochemical switching properties instead of the conventional surfactant. The solubilization of pyrene by the oxidized and reduced states of Fc12 was investigated, and the effects of conventional environmental factors such as pH and temperature on Fc12 solubilization were studied. The results showed that compared with the oxidized Fc12, the reduced Fc12 displayed significant solubilization of pyrene above its critical micelle concentration (CMC), and the solubilization ability was enhanced with the increase of surfactant concentration. Temperature had a significant effect on the solubilization of Fc12. For example, for the reduced Fc12, the apparent solubility of 3 mmol·L-1 pyrene was 0.779 mg·L-1 at 25℃. When the temperature was increased to 40℃, the apparent solubilityincreased by 24.6% to 0.971 mg·L-1. However, for the oxidized Fc12, the apparent solubility of pyrene increased merdly by 6.5% merely. The release rate of pyrene increased from 63.67% to 71.27%. pH also showed significant effect on the solubilization of Fc12. When the pH was changed from 6 to 10, the solubilization of the reduced Fc12 initially increased and then decreased, the solubility of pyrene reached the maximum value around pH 9, while at pH 8, a better release effect was deserved.
-
-
[1] 宋宛桐. 我国农业土壤污染现状及其成因[J]. 农业与技术, 2016, 36(8):245-245. SONG W T. The current status and causes of soil pollution in China[J]. Agriculture and Technology, 2016, 36(8):245-245(in Chinese).
[2] 周东美, 郝秀珍, 薛艳, 等. 污染土壤的修复技术研究进展[J]. 生态环境, 2014, 13(2):234-242. ZHOU D M, HAO X Z, XUE Y, et al. Advances in remediation technologies of comtaminated soils[J]. Ecology and Environment, 2014, 13(2):234-242(in Chinese).
[3] 赵玲, 滕应, 骆永明. 中国农田土壤农药污染现状和防控对策[J]. 土壤, 2017, 49(3):417-427. ZHAO L, TENG Y, LUO Y M. Present pollution status and control strategy of pesticides in agricultural soils in china:A review[J]. Soils, 2017, 49(3):417-427(in Chinese).
[4] CORREDOR B B, PINO N J, CARDONA S. Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil[J]. Journal of Environmental Science, 2015, 28:101-109. [5] 李森, 张杨, 罗勇, 等. 基于均匀设计的类Fenton's体系去除污染土壤中蒽和芘的研究[J]. 环境科学学报, 2015, 35(4):1157-1163. LI S, ZHANG Y, LUO Y, et al. Application of uniform design method in removal of anthracene and pyrene in contaminated soil by using Fenton-like system[J]. Acta Scientiae Circumstantiae,2015, 35(4):1157-1163(in Chinese).
[6] 王红菊, 李倩倩, 沈羽, 等. 大豆和小麦根系对菲的吸持作用及其生物有效性[J]. 环境科学, 2017, 38(6):2561-2567. WANG H J, LI Q Q, SHEN Y, et al. Sorption of phenanthrene to soybean and wheat roots and the bioavailability of sorbed phenanthrene[J]. Environmental Science, 2017, 38(6):2561-2567(in Chinese).
[7] 倪妮, 宋洋, 王芳, 等. 多环芳烃污染土壤生物联合强化修复研究进展[J]. 土壤学报, 2016, 53(3):561-571. NI N, SONY Y, WANG F, et al. A review of researches on intensified bio-remediation of polycyclic aromatic hydrocarbons contaminated soils[J]. Acta Pedologica Sinica, 2016, 53(3):561-571(in Chinese).
[8] 吴蔓莉, 陈凯丽, 叶茜琼, 等. 堆肥-生物强化对重度石油污染土壤的修复作用[J]. 环境科学, 2017, 38(10):4412-4419. WU M L, CHEN K L, YE Q Q. et al. Remediation of petroleum-contaminated soil using a bioaugmented compost technique[J].Environmental Science, 2017, 38(10):4412-4419(in Chinese).
[9] STRAUBE W L, NESTLER C C, HANSEN L D, et al. Remediation of polyaromatic, hydrocarbons(PAHs) through landfarming with biostimulation and bioaugmentation[J]. Acta Biotechnologica, 2003, 23(2/3):179-197. [10] KHAN F I, HUSAIN T, HEJAZI R J. An overview and analysis of site remediation technologies[J]. Journal of Environment Management, 2004, 71(2):95-122. [11] TORTES L G, LEMUS X, URQUIZA G, et al. Surfactant enhanced washing of drilling fluids, a promising remediation technique[J]. Tenside Surfactant Deterg, 2005, 42(6):347-355. [12] MAIRE J, FATINROUGE N. Surfactant foam flushing for in situ removal of DNAPLs in shallow soils[J]. Journal of Harzardous Materials, 2017, 321:247-255. [13] LIANG X, GUO C, LIAO C, et al. Drivers and applications of intergrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs)[J]. Environmental Pollution, 2017, 225:129-140. [14] WANG L, PENG L B, XIE L L. Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation[J]. Environmental Science & Technology, 2017, 51(12):7055-7064. [15] TIAN S L, LONG J, HE S S. Reversible solubilization of typical polycyclic aromatic hydrocarbons(PAH) by a gas switchable surfactant[J]. Journal of Surfactants and Detergents, 2015, 18(1):1-7. [16] LIU Y X, JESSOP P G, CUNNINGHAM M. Switchable surfactants[J]. Science, 2006, 313(18):958-960. [17] 马宇萱. 含偶氮苯基CO2/N2-光双重刺激响应型表面活性剂的合成及性能研究[D]. 无锡:江南大学, 2016. MA Y X. Synthesis and property study of a dual CO2/N2-light stimuli-responsive surfactant containing azophenyl group[D]. Wuxi:Jiangnan University, 2016 (in Chinese).
[18] TANG Q Y, HUANG Z Y, ZHENG C C. Switchable surfactant-based CO2-in-water foam stabilized by wormlike micelle[J]. Industrial& Engineering Chemistry Research, 2018, 57(40):13291-13299. [19] 尹金超, 陈宇开, 蒋建中, 等. 酸碱-氧化还原双重刺激响应型表面活性剂的合成与性能[J]. 高等学校化学学报, 2017, 38(9):1645-1653. YIN J C, CHEN Y K, JIANG J Z, et al. Synthesis and properties of pH and redox dual-switchable surfactant[J]. Chemical Journal of Chinese Universities, 2017, 38(9):1645-1653(in Chinese).
[20] LONG J, TIAN S L, LI G. Micellar aggregation behavior and electrochemically reversible solubilization of a redox-active nonionic surfactant[J]. Journal of Solution Chemistry, 2015, 44(6):1163-1176. [21] [22] 李英杰. 典型可逆表面活性剂的合成、表征及其对DNAPLs的增溶作用[D]. 昆明:昆明理工大学, 2009. LI Y J. Typical reversible surfactants:Synthesis, characterazation and application in the solubilization of LNAPLs[D]. Kunming:Kunming University of Science and Technology, 2009(in Chinese). [23] LONG J, TIAN S L, NIU Y H. Electrochemically reversible solubilization of polycyclic aromatic hydrocarbons by mixed micelles composed of redox-active cationic surfactant and conventional nonionic surfactant[J]. Polycyclic Aromatic Compounds, 2015, 36(1):1-19. [24] KITE D E, CHIOU C T. Water solubility enhancements of DDT and Trichlorobenzene by some surfactants below and above the critical micelle concentration[J]. Environmental Science Technology, 1989, 23(7):832-838. [25] TSUCHIYA K, ORIHARA Y, KONDA Y. Control of viscoelasticity using redox reaction[J]. Journal of the American Chemical Society, 2004, 126(39):12282-12283. [26] SAJI T, HOSHINON K, AOYAGUI S. Reversible formation and disruption of micelles by control of the redox state of the head group[J]. J Am Chem Soc, 1985, 107(24):6865-6868. [27] TAJIMA K, HUXUR T, IMAI Y, et al. Surface activities of ferrocene surfactants[J]. Colloids Surfaces A:Physicochemical Engineering Aspects. 1995, 94(2-3):243-251. [28] EDWARDS D A, LUTHY R G, LIU Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions[J]. Environmental Science & Technology, 1991, 25(3):127-133. [29] 杨建刚, 刘翔, 余刚, 等. 非离子表面活性剂溶液中多环芳烃的溶解特性[J]. 环境科学, 2003, 24(6):79-82. YANG J G, LIU X, YU G, et al. Characterization of polycyclic aromatic hydrocarbons dissolved in nonionic surfactants[J]. Environmental Science, 2003, 24(6):79-82(in Chinese).
[30] 余海粟, 朱利中. 混合表面活性剂对菲和芘的增溶作用[J]. 环境化学, 2004, 23(5):485-489. YU H S, ZHU L Z. Water solubility enhancement of phenanthrene and pyrene by mixed anionic-nonionic surfactant solutions[J]. Environmental Chemistry, 2004, 23(5):485-489(in Chinese).
[31] 肖进新, 赵振国. 表面活性剂应用原理[M]. 北京:化学工业出版社, 2003:168-170. XIAO J X, ZHAO Z G. Application principle of surfactant[M]. Beijing:Chemical Industry Press, 2003:168 -170(in Chinese).
[32] 冯少良. 混合表面活性剂对多环芳烃的增溶作用机理及影响因素[D]. 杭州:浙江大学, 2003. FENG S L. The mechanism of solubilization of polycyclic aromatic hydrocarbons and influencing factors by mixed surfactants[D]. Hangzhou:Zhejiang University, 2003(in Chinese). [33] 白静, 赵永胜, 周冰, 等. 非离子表面活性剂Tween80增溶萘实验模拟[J]. 中国环境科学, 2013, 33(11):1993-1998. BAI J, ZHAO Y S, ZHOU B, et al. Laboratory investigation of solubilization of naphthalene by nonionic surfactant Tween80[J]. China Environmental Science, 2013, 33(11):1993-1998(in Chinese).
[34] 郭利果, 苏荣国, 梁生康, 等. 鼠李糖脂生物表面活性剂对多环芳烃的增溶作用[J]. 环境化学, 2009, 28(4):510-514. GUO L G, SU R G, LIANG S K, et al. Solubilization of polycyclic aromatic hydrocarbons by rhamnolipid biosurfactant[J]. Environmental Chemistry, 2009, 28(4):510-514(in Chinese).
[35] CHAMPION J T, GILKEY J C, LAMPARSKI H, et al. Electron microscopy of rhamnolipid (biosurfactant) morphology:Effects of pH, cadmium, and octadecane[J]. Journal of Colloid Interface Science, 1995, 170(2):569-574. -

计量
- 文章访问数: 1996
- HTML全文浏览数: 1996
- PDF下载数: 118
- 施引文献: 0