电化学开关表面活性剂对芘的可逆增溶作用

胡晶, 田森林, 周春坚, 刘相良, 李英杰. 电化学开关表面活性剂对芘的可逆增溶作用[J]. 环境化学, 2020, (2): 475-481. doi: 10.7524/j.issn.0254-6108.2019030301
引用本文: 胡晶, 田森林, 周春坚, 刘相良, 李英杰. 电化学开关表面活性剂对芘的可逆增溶作用[J]. 环境化学, 2020, (2): 475-481. doi: 10.7524/j.issn.0254-6108.2019030301
HU Jing, TIAN Senlin, ZHOU Chunjian, LIU Xiangliang, LI Yingjie. Reversible solubilization of pyrene by an electrochemically switchable surfactant[J]. Environmental Chemistry, 2020, (2): 475-481. doi: 10.7524/j.issn.0254-6108.2019030301
Citation: HU Jing, TIAN Senlin, ZHOU Chunjian, LIU Xiangliang, LI Yingjie. Reversible solubilization of pyrene by an electrochemically switchable surfactant[J]. Environmental Chemistry, 2020, (2): 475-481. doi: 10.7524/j.issn.0254-6108.2019030301

电化学开关表面活性剂对芘的可逆增溶作用

    通讯作者: 李英杰, E-mail: yjli@kmust.edu.cn
  • 基金项目:

    国家自然科学基金(41761072)资助.

Reversible solubilization of pyrene by an electrochemically switchable surfactant

    Corresponding author: LI Yingjie, yjli@kmust.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(41761072).
  • 摘要: 表面活性剂增强修复技术(SER)是目前行之有效的有机污染土壤修复技术,但SER技术存在表面活性剂与污染物分离困难、易导致二次污染、成本高等问题.基于此,提出采用具有电化学开关特性的表面活性剂(N,N-二甲基二茂铁甲基十二烷基溴化铵,Fc12)代替SER技术中的常规表面活性剂,发展基于开关表面活性剂的可逆增强修复技术(RSER).选取芘作为目标物,研究了Fc12在氧化和还原态对芘的增溶作用以及常见环境因素,如pH和温度对Fc12可逆增溶的影响.结果表明,相对于氧化态Fc12,还原态Fc12在其临界胶束浓度(CMC)以上时对芘表现出显著的增溶作用,且增溶能力随表面活性剂浓度增大而增强.温度对Fc12的增溶作用影响显著,例如,还原态Fc12在浓度为3 mmol·L-1、25℃条件下时,芘的表观溶解度为0.779 mg·L-1,当温度增加到40℃时,芘的表观溶解度为0.971 mg·L-1,其表观溶解度增加了24.6%;但氧化态条件下,芘的表观溶解度仅增加了6.5%;芘的解吸率(芘在还原和氧化态Fc12的表观溶解度差值与还原态Fc12增溶芘的比值)由63.67%增加到71.27%.pH也显著影响Fc12的增溶,当pH值在6-10范围变化时,还原态Fc12的增溶作用呈现先增加后减小的趋势,且在pH 9附近增溶能力最强,而pH 8时芘的解吸果最好.
  • 加载中
  • [1] 宋宛桐. 我国农业土壤污染现状及其成因[J]. 农业与技术, 2016, 36(8):245-245.

    SONG W T. The current status and causes of soil pollution in China[J]. Agriculture and Technology, 2016, 36(8):245-245(in Chinese).

    [2] 周东美, 郝秀珍, 薛艳, 等. 污染土壤的修复技术研究进展[J]. 生态环境, 2014, 13(2):234-242.

    ZHOU D M, HAO X Z, XUE Y, et al. Advances in remediation technologies of comtaminated soils[J]. Ecology and Environment, 2014, 13(2):234-242(in Chinese).

    [3] 赵玲, 滕应, 骆永明. 中国农田土壤农药污染现状和防控对策[J]. 土壤, 2017, 49(3):417-427.

    ZHAO L, TENG Y, LUO Y M. Present pollution status and control strategy of pesticides in agricultural soils in china:A review[J]. Soils, 2017, 49(3):417-427(in Chinese).

    [4] CORREDOR B B, PINO N J, CARDONA S. Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil[J]. Journal of Environmental Science, 2015, 28:101-109.
    [5] 李森, 张杨, 罗勇, 等. 基于均匀设计的类Fenton's体系去除污染土壤中蒽和芘的研究[J]. 环境科学学报, 2015, 35(4):1157-1163.

    LI S, ZHANG Y, LUO Y, et al. Application of uniform design method in removal of anthracene and pyrene in contaminated soil by using Fenton-like system[J]. Acta Scientiae Circumstantiae,2015, 35(4):1157-1163(in Chinese).

    [6] 王红菊, 李倩倩, 沈羽, 等. 大豆和小麦根系对菲的吸持作用及其生物有效性[J]. 环境科学, 2017, 38(6):2561-2567.

    WANG H J, LI Q Q, SHEN Y, et al. Sorption of phenanthrene to soybean and wheat roots and the bioavailability of sorbed phenanthrene[J]. Environmental Science, 2017, 38(6):2561-2567(in Chinese).

    [7] 倪妮, 宋洋, 王芳, 等. 多环芳烃污染土壤生物联合强化修复研究进展[J]. 土壤学报, 2016, 53(3):561-571.

    NI N, SONY Y, WANG F, et al. A review of researches on intensified bio-remediation of polycyclic aromatic hydrocarbons contaminated soils[J]. Acta Pedologica Sinica, 2016, 53(3):561-571(in Chinese).

    [8] 吴蔓莉, 陈凯丽, 叶茜琼, 等. 堆肥-生物强化对重度石油污染土壤的修复作用[J]. 环境科学, 2017, 38(10):4412-4419.

    WU M L, CHEN K L, YE Q Q. et al. Remediation of petroleum-contaminated soil using a bioaugmented compost technique[J].Environmental Science, 2017, 38(10):4412-4419(in Chinese).

    [9] STRAUBE W L, NESTLER C C, HANSEN L D, et al. Remediation of polyaromatic, hydrocarbons(PAHs) through landfarming with biostimulation and bioaugmentation[J]. Acta Biotechnologica, 2003, 23(2/3):179-197.
    [10] KHAN F I, HUSAIN T, HEJAZI R J. An overview and analysis of site remediation technologies[J]. Journal of Environment Management, 2004, 71(2):95-122.
    [11] TORTES L G, LEMUS X, URQUIZA G, et al. Surfactant enhanced washing of drilling fluids, a promising remediation technique[J]. Tenside Surfactant Deterg, 2005, 42(6):347-355.
    [12] MAIRE J, FATINROUGE N. Surfactant foam flushing for in situ removal of DNAPLs in shallow soils[J]. Journal of Harzardous Materials, 2017, 321:247-255.
    [13] LIANG X, GUO C, LIAO C, et al. Drivers and applications of intergrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs)[J]. Environmental Pollution, 2017, 225:129-140.
    [14] WANG L, PENG L B, XIE L L. Compatibility of surfactants and thermally activated persulfate for enhanced subsurface remediation[J]. Environmental Science & Technology, 2017, 51(12):7055-7064.
    [15] TIAN S L, LONG J, HE S S. Reversible solubilization of typical polycyclic aromatic hydrocarbons(PAH) by a gas switchable surfactant[J]. Journal of Surfactants and Detergents, 2015, 18(1):1-7.
    [16] LIU Y X, JESSOP P G, CUNNINGHAM M. Switchable surfactants[J]. Science, 2006, 313(18):958-960.
    [17] 马宇萱. 含偶氮苯基CO2/N2-光双重刺激响应型表面活性剂的合成及性能研究[D]. 无锡:江南大学, 2016. MA Y X. Synthesis and property study of a dual CO2/N2-light stimuli-responsive surfactant containing azophenyl group[D]. Wuxi:Jiangnan University, 2016

    (in Chinese).

    [18] TANG Q Y, HUANG Z Y, ZHENG C C. Switchable surfactant-based CO2-in-water foam stabilized by wormlike micelle[J]. Industrial& Engineering Chemistry Research, 2018, 57(40):13291-13299.
    [19] 尹金超, 陈宇开, 蒋建中, 等. 酸碱-氧化还原双重刺激响应型表面活性剂的合成与性能[J]. 高等学校化学学报, 2017, 38(9):1645-1653.

    YIN J C, CHEN Y K, JIANG J Z, et al. Synthesis and properties of pH and redox dual-switchable surfactant[J]. Chemical Journal of Chinese Universities, 2017, 38(9):1645-1653(in Chinese).

    [20] LONG J, TIAN S L, LI G. Micellar aggregation behavior and electrochemically reversible solubilization of a redox-active nonionic surfactant[J]. Journal of Solution Chemistry, 2015, 44(6):1163-1176.
    [21]
    [22] 李英杰. 典型可逆表面活性剂的合成、表征及其对DNAPLs的增溶作用[D]. 昆明:昆明理工大学, 2009. LI Y J. Typical reversible surfactants:Synthesis, characterazation and application in the solubilization of LNAPLs[D]. Kunming:Kunming University of Science and Technology, 2009(in Chinese).
    [23] LONG J, TIAN S L, NIU Y H. Electrochemically reversible solubilization of polycyclic aromatic hydrocarbons by mixed micelles composed of redox-active cationic surfactant and conventional nonionic surfactant[J]. Polycyclic Aromatic Compounds, 2015, 36(1):1-19.
    [24] KITE D E, CHIOU C T. Water solubility enhancements of DDT and Trichlorobenzene by some surfactants below and above the critical micelle concentration[J]. Environmental Science Technology, 1989, 23(7):832-838.
    [25] TSUCHIYA K, ORIHARA Y, KONDA Y. Control of viscoelasticity using redox reaction[J]. Journal of the American Chemical Society, 2004, 126(39):12282-12283.
    [26] SAJI T, HOSHINON K, AOYAGUI S. Reversible formation and disruption of micelles by control of the redox state of the head group[J]. J Am Chem Soc, 1985, 107(24):6865-6868.
    [27] TAJIMA K, HUXUR T, IMAI Y, et al. Surface activities of ferrocene surfactants[J]. Colloids Surfaces A:Physicochemical Engineering Aspects. 1995, 94(2-3):243-251.
    [28] EDWARDS D A, LUTHY R G, LIU Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions[J]. Environmental Science & Technology, 1991, 25(3):127-133.
    [29] 杨建刚, 刘翔, 余刚, 等. 非离子表面活性剂溶液中多环芳烃的溶解特性[J]. 环境科学, 2003, 24(6):79-82.

    YANG J G, LIU X, YU G, et al. Characterization of polycyclic aromatic hydrocarbons dissolved in nonionic surfactants[J]. Environmental Science, 2003, 24(6):79-82(in Chinese).

    [30] 余海粟, 朱利中. 混合表面活性剂对菲和芘的增溶作用[J]. 环境化学, 2004, 23(5):485-489.

    YU H S, ZHU L Z. Water solubility enhancement of phenanthrene and pyrene by mixed anionic-nonionic surfactant solutions[J]. Environmental Chemistry, 2004, 23(5):485-489(in Chinese).

    [31] 肖进新, 赵振国. 表面活性剂应用原理[M]. 北京:化学工业出版社, 2003:168-170. XIAO J X, ZHAO Z G. Application principle of surfactant[M]. Beijing:Chemical Industry Press, 2003:168

    -170(in Chinese).

    [32] 冯少良. 混合表面活性剂对多环芳烃的增溶作用机理及影响因素[D]. 杭州:浙江大学, 2003. FENG S L. The mechanism of solubilization of polycyclic aromatic hydrocarbons and influencing factors by mixed surfactants[D]. Hangzhou:Zhejiang University, 2003(in Chinese).
    [33] 白静, 赵永胜, 周冰, 等. 非离子表面活性剂Tween80增溶萘实验模拟[J]. 中国环境科学, 2013, 33(11):1993-1998.

    BAI J, ZHAO Y S, ZHOU B, et al. Laboratory investigation of solubilization of naphthalene by nonionic surfactant Tween80[J]. China Environmental Science, 2013, 33(11):1993-1998(in Chinese).

    [34] 郭利果, 苏荣国, 梁生康, 等. 鼠李糖脂生物表面活性剂对多环芳烃的增溶作用[J]. 环境化学, 2009, 28(4):510-514.

    GUO L G, SU R G, LIANG S K, et al. Solubilization of polycyclic aromatic hydrocarbons by rhamnolipid biosurfactant[J]. Environmental Chemistry, 2009, 28(4):510-514(in Chinese).

    [35] CHAMPION J T, GILKEY J C, LAMPARSKI H, et al. Electron microscopy of rhamnolipid (biosurfactant) morphology:Effects of pH, cadmium, and octadecane[J]. Journal of Colloid Interface Science, 1995, 170(2):569-574.
  • 加载中
计量
  • 文章访问数:  1467
  • HTML全文浏览数:  1467
  • PDF下载数:  50
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-03

电化学开关表面活性剂对芘的可逆增溶作用

    通讯作者: 李英杰, E-mail: yjli@kmust.edu.cn
  • 昆明理工大学环境科学与工程学院, 昆明, 650500
基金项目:

国家自然科学基金(41761072)资助.

摘要: 表面活性剂增强修复技术(SER)是目前行之有效的有机污染土壤修复技术,但SER技术存在表面活性剂与污染物分离困难、易导致二次污染、成本高等问题.基于此,提出采用具有电化学开关特性的表面活性剂(N,N-二甲基二茂铁甲基十二烷基溴化铵,Fc12)代替SER技术中的常规表面活性剂,发展基于开关表面活性剂的可逆增强修复技术(RSER).选取芘作为目标物,研究了Fc12在氧化和还原态对芘的增溶作用以及常见环境因素,如pH和温度对Fc12可逆增溶的影响.结果表明,相对于氧化态Fc12,还原态Fc12在其临界胶束浓度(CMC)以上时对芘表现出显著的增溶作用,且增溶能力随表面活性剂浓度增大而增强.温度对Fc12的增溶作用影响显著,例如,还原态Fc12在浓度为3 mmol·L-1、25℃条件下时,芘的表观溶解度为0.779 mg·L-1,当温度增加到40℃时,芘的表观溶解度为0.971 mg·L-1,其表观溶解度增加了24.6%;但氧化态条件下,芘的表观溶解度仅增加了6.5%;芘的解吸率(芘在还原和氧化态Fc12的表观溶解度差值与还原态Fc12增溶芘的比值)由63.67%增加到71.27%.pH也显著影响Fc12的增溶,当pH值在6-10范围变化时,还原态Fc12的增溶作用呈现先增加后减小的趋势,且在pH 9附近增溶能力最强,而pH 8时芘的解吸果最好.

English Abstract

参考文献 (35)

目录

/

返回文章
返回