邻苯二甲酸酯与蔗糖转化酶的互用机制

高岩, 陈文晶, 刘万贵, 王志刚. 邻苯二甲酸酯与蔗糖转化酶的互用机制[J]. 环境化学, 2020, (2): 482-488. doi: 10.7524/j.issn.0254-6108.2019030901
引用本文: 高岩, 陈文晶, 刘万贵, 王志刚. 邻苯二甲酸酯与蔗糖转化酶的互用机制[J]. 环境化学, 2020, (2): 482-488. doi: 10.7524/j.issn.0254-6108.2019030901
GAO Yan, CHEN Wenjing, LIU Wangui, WANG Zhigang. Interaction between phthalic acid esters and invertase[J]. Environmental Chemistry, 2020, (2): 482-488. doi: 10.7524/j.issn.0254-6108.2019030901
Citation: GAO Yan, CHEN Wenjing, LIU Wangui, WANG Zhigang. Interaction between phthalic acid esters and invertase[J]. Environmental Chemistry, 2020, (2): 482-488. doi: 10.7524/j.issn.0254-6108.2019030901

邻苯二甲酸酯与蔗糖转化酶的互用机制

    通讯作者: 王志刚, E-mail: wzg1980830@sina.com
  • 基金项目:

    齐齐哈尔大学教育科学研究项目(2017038)和国家大学生创新创业训练计划项目(201810232034)资助.

Interaction between phthalic acid esters and invertase

    Corresponding author: WANG Zhigang, wzg1980830@sina.com
  • Fund Project: Supported by Qiqihar University Education Science Research Project (2017038) and College Student Innovation and Entrepreneurship Training Program (201810232034).
  • 摘要: 本研究以邻苯二甲酸酯(phthalic acid esters,PAEs)和蔗糖转化酶为试验材料,采用同步荧光光谱、共振光散射光谱(RLS)、分子平均粒径、分子对接模拟、分子动力学模拟、酶活性和酶促反应动力学,探究PAEs与蔗糖转化酶的微观作用机制.结果表明,随着PAEs浓度的增加,蔗糖转化酶的RLS强度和分子平均粒径逐渐降低;PAEs主要通过疏水作用与蔗糖转化酶活性中心氨基酸残基结合,并通过氢键作用锁定结合取向;PAEs导致蔗糖转化酶的RMSD值降低;PAEs污染导致蔗糖转化酶酶活性显著降低(P<0.05),并使得其反应动力学参数KmVmax减小,属于反竞争性抑制机制.研究表明,PAEs与蔗糖转化酶形成PAEs-酶复合物,改变了蔗糖转化酶的分子构象,并通过反竞争性抑制机制抑制蔗糖转化酶的酶活性.
  • 加载中
  • [1] ZENG F, CUI K, FU J, et al. Biodegradability of di(2-Ethylhexyl) phthalate by pseudomonas fluorescens FS1[J]. Water Air & Soil Pollution, 2002, 140(1-4):297-305.
    [2] RAHMAN M, BRAZEL C S. The plasticizer market:An assessment of traditional plasticizers and research trends to meet new challenges[J]. Progress in Polymer Science, 2004, 29(12):1223-1248.
    [3] BLAIR J D, IKONOMOU M G, KELLY B C, et al. Ultra-trace determination of phthalate ester metabolites in seawater, sediments, and biota from an urbanized marine inlet by LC/ESI-MS/MS[J]. Environmental Science & Technology, 2009, 43(16):6262-6268.
    [4] CHEN C W, DONG C D. Distribution of phthalate esters in sediments of Kaohsiung Harbor, Taiwan[J]. Soil and Sediment Contamination:An International Juounal, 2013, 22(2):119-131.
    [5] WANG J, BO L, LI L, et al. Occurrence of phthalate esters in river sediments in areas with different land use patterns[J]. Science of the Total Environment, 2014, 500-501:113-119.
    [6] XU D, DENG X, FANG E, et al. Determination of 23 phthalic acid esters in food by liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1324:49-56.
    [7] 李天宝, 刘炜, 王春利, 等. 邻苯二甲酸酯类增塑剂提取技术研究进展[J]. 化学分析计量, 2015, 24(4):99-102.

    LI T B, LIU W, WANG C L, et al. Research progress on extraction technology of phthalate ester plasticizer[J]. Chemical Analysis and Meterage, 2015, 24(4):99-102(in Chinese).

    [8] YANG H, XIE W, LIU Q, et al. Distribution of phthalate esters in topsoil:A case study in the Yellow River Delta, China[J]. Environmental Monitoring & Assessment, 2013, 185(10):8489-8500.
    [9] 俞锞, 李志邈, 万红建, 等. 高等植物蔗糖转化酶功能的研究进展[J]. 安徽农业科学, 2013, 41(33):12815-12818.

    YU K, LI Z M, WANG H J, et al. Advances in studies on the functions of invertase in higher plants[J]. Anhui Agricultural Science, 2013, 41(33):12815-12818(in Chinese).

    [10] 王连军. 高等植物中蔗糖转化酶的研究进展[J]. 安徽农业科学, 2014, 42(24):8108-8111.

    WANG L J. Advances in invertase research in higher plants[J]. Anhui Agricultural Science, 2014, 42(24):8108-8111(in Chinese).

    [11] 刘慧英, 朱祝军. 转化酶在高等植物蔗糖代谢中的作用研究进展[J]. 植物学通报, 2002, 19(6):666-674.

    LIU H Y, ZHU Z J. Progress in the role of invertase in sucrose metabolism in higher plants[J]. Botany Bulletin, 2002, 19(6):666-674(in Chinese).

    [12] 王俊刚, 赵婷婷, 杨本鹏, 等. 甘蔗脱毒健康种苗中蔗糖转化酶表达分析[J]. 江苏农业科学, 2017, 45(21):35-39.

    WANG J G, ZHAO T T, YANG B P, et al. Expression analysis of sucrose invertase in healthy seedlings of sugarcane detoxification[J]. Jiangsu Agricultural Sciences, 2017, 45(21):35-39(in Chinese).

    [13] 李欢可. 微生物有机肥对土壤改良及烟草钾素累积规律研究[D]. 长沙:湖南大学, 2013. LI H K. Study on soil improvement and potassium accumulation in tobacco by microbial organic fertilizer[D]. Changsha:Hunan University, 2013(in Chinese).
    [14] ZHANG R, ZHAO L, LIU R. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods[J]. Journal of Photochemistry & Photobiology B Biology, 2016, 163:40-46.
    [15] SOMAN S, CHACKO A S, PRASAD V S, et al. Self-assembly of oleylamine modified nano-fibrillated cellulose from areca husk fibers into giant vesicles[J]. Carbohydrate Polymers, 2018, 182:69-74.
    [16] TAN S, CHI Z, SHAN Y, et al. Interaction studies of polybrominated diphenyl ethers (PBDEs) with human serum albumin (HSA):Molecular docking investigations[J]. Environmental Toxicology & Pharmacology, 2017, 54:34-39.
    [17] WU Z, YI Z, DONG L, et al. Molecular simulation study of the specific combination between four kinds of phthalic acid esters and human serum albumin[J]. Environmental Toxicology & Pharmacology, 2016, 41:259-265.
    [18] ZHOU H, WANG C, DENG T, et al. Novel urushiol derivatives as HDAC8 inhibitors:Rational design, virtual screening, molecular docking and molecular dynamics studies[J]. Journal of Biomolecular Structure and Dynamics, 2018, 36(8):1966-1978.
    [19] 李静媛, 张莹, 姜楠楠, 等. 加热处理对蜂蜜中4种酶活性的影响[J]. 安徽农学通报, 2017, 23(7):20-22.

    LI J Y, ZHANG Y, JIANG N N, et al. Effect of heating treatment on activity of 4 enzymes in honey[J]. Anhui Agricultural Science Bulletin, 2017, 23(7):20-22(in Chinese).

    [20] SUN H, XIA Q, LIU R. Comparison of the binding of the dyes Sudan Ⅱ and Sudan IV to bovine hemoglobin[J]. Journal of Luminescence, 2014, 148(7):143-150.
    [21] ZHANG P, LAN P, MA Y, et al. Spectroscopic investigation on the interaction of Cr(VI) with bovine serum albumin[J]. Journal of Biochemical and Molecular Toxicology, 2012, 26(2):54-59.
    [22] ZHANG R, ZHAO L, LIU R. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods[J]. Journal of Photochemistry & Photobiology B Biology, 2016, 163:40-46.
    [23] LIU Y, CAO R, QIN P, et al. Assessing the potential toxic effect of one persistent organic pollutant:Non-covalent interaction of dicofol with the enzyme trypsin[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2012, 89(4):210-215.
    [24] WU Z, YI Z, DONG L, et al. Molecular simulation study of the specific combination between four kinds of phthalic acid esters and human serum albumin[J]. Environmental Toxicology & Pharmacology, 2016, 41(8):259-265.
    [25] TAN S, CHI Z, SHAN Y, et al. Interaction studies of polybrominated diphenyl ethers (PBDEs) with human serum albumin (HSA):Molecular docking investigations[J]. Environmental Toxicology & Pharmacology, 2017, 54:34-39.
    [26] TAN S, WANG D, CHI Z, et al. Study on the interaction between typical phthalic acid esters (PAEs) and human haemoglobin (hHb) by molecular docking[J]. Environmental Toxicology and Pharmacology, 2017, 53:206-211.
    [27] LI J, LI J, JIAO Y, et al. Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA)[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2014, 118(2):48-54.
    [28] PAWEL S'ledz', CAFLISCH A. Protein structure-based drug design:from docking to molecular dynamics[J]. Current Opinion in Structural Biology, 2017, 48:93-102.
    [29] JANOWSKI P A, LIU C, DECKMAN J, et al. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice[J]. Protein Science, 2015, 25(1):87-102.
    [30] ZHANG R, ZHAO L, LIU R. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods[J]. Journal of Photochemistry & Photobiology B Biology, 2016, 163, 40-46.
    [31] ZENG F, CUI K, XIE Z, et al. Distribution of phthalate esters in urban soils of Subtropical City[J]. Journal of Hazardous Materials, 2009, 164:1171-1178.
    [32] GARCIA J M, ROBERTSON M L. The future of plastics recycling[J]. Science, 2017, 358(6365):870-872.
    [33] MO C, CAI Q, TANG S, et al. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta[J]. Archives of Environmental Contamination and Toxicology, 2009, 56(2):181-189.
    [34] CRABBE M J C. Book review:Enzyme kinetics:a modern approach[J]. Computational Biology & Chemistry, 2003, 27(2):161-162.
    [35] 陈文晶, 王志刚, 徐伟慧, 等. 邻苯二甲酸酯污染对黑土转化酶与脲酶反应动力学的影响[J]. 浙江农业学报, 2018, 30(9):1555-1560.

    CHEN W J, WANG Z G, XU W H, et al. Effect of phthalate esters contamination on urease and invertase reaction kinetics of black soil[J]. Acta Agriculturae Zhejiangensis, 2018, 30(9):1555-1560(in Chinese).

  • 加载中
计量
  • 文章访问数:  1208
  • HTML全文浏览数:  1208
  • PDF下载数:  34
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-09

邻苯二甲酸酯与蔗糖转化酶的互用机制

    通讯作者: 王志刚, E-mail: wzg1980830@sina.com
  • 1. 齐齐哈尔大学生命科学与农林学院, 齐齐哈尔, 161006;
  • 2. 齐齐哈尔市富拉尔基区农业推广站, 齐齐哈尔, 161041
基金项目:

齐齐哈尔大学教育科学研究项目(2017038)和国家大学生创新创业训练计划项目(201810232034)资助.

摘要: 本研究以邻苯二甲酸酯(phthalic acid esters,PAEs)和蔗糖转化酶为试验材料,采用同步荧光光谱、共振光散射光谱(RLS)、分子平均粒径、分子对接模拟、分子动力学模拟、酶活性和酶促反应动力学,探究PAEs与蔗糖转化酶的微观作用机制.结果表明,随着PAEs浓度的增加,蔗糖转化酶的RLS强度和分子平均粒径逐渐降低;PAEs主要通过疏水作用与蔗糖转化酶活性中心氨基酸残基结合,并通过氢键作用锁定结合取向;PAEs导致蔗糖转化酶的RMSD值降低;PAEs污染导致蔗糖转化酶酶活性显著降低(P<0.05),并使得其反应动力学参数KmVmax减小,属于反竞争性抑制机制.研究表明,PAEs与蔗糖转化酶形成PAEs-酶复合物,改变了蔗糖转化酶的分子构象,并通过反竞争性抑制机制抑制蔗糖转化酶的酶活性.

English Abstract

参考文献 (35)

目录

/

返回文章
返回