二级出水典型污染物超滤膜污染行为的分子动力学模拟研究
Molecular dynamics simulation of membrane fouling by typical pollutants in secondary effluent
-
摘要: 以6-羧基葡萄糖、半胱氨酸和水杨酸分别代表二级出水的3种典型污染物多糖(SA)、蛋白质(BSA)和腐殖酸(HA)的分子组成,通过分子动力学(MD)技术,模拟了二级出水典型污染物,与醋酸纤维素(CA)、聚醚砜(PES)、聚偏氟乙烯(PVDF)等3种主流商业膜材料之间的结合能(ΔE),作为对具有特征污染物性质的二级出水,在不同的膜材料上产生膜污染行为的判断依据.MD数据显示:PVDF结构单元与6-羧基葡萄糖和水杨酸分子间的ΔE高于半胱氨酸,而PES结构单元与半胱氨酸分子间的ΔE值高于其它分子间的组合.3种污染物在超滤膜上的过滤通量衰减及膜污染指数,证实了MD对PVDF膜上SA和HA污染性更高,而BSA在PES膜上更易产生膜污染的预测结论;分别对6-羧基葡萄糖、水杨酸、半胱氨酸与3种聚合物结构单元间的ΔE值,与SA、HA、BSA的超滤操作初始通量衰减率间进行了线性拟合,得到的拟合系数分别为0.9981、0.9555、0.7186,说明半胱氨酸作为蛋白质类代表物进行分子模拟尚有一定的不足.Abstract: 6-carboxy glucose, cysteine and salicylic acid, representing the molecular composition of three typical pollutants in the secondary effluent, polysaccharide (SA), protein (BSA) and humic acid (HA) were used to simulate the binding energy (ΔE) between the secondary effluent and three main commercial membrane materials, cellulose acetate (CA), polyethersulfone (PES), polyvinylidene fluoride (PVDF) by molecular dynamics (MD) technique, which can be used as a basis for judging the membrane fouling behavior of the secondary effluent with characteristic pollutant properties on different membrane materials. The MD data shows that the ΔE between the structural unit of the PVDF and 6-carboxyglucose and salicylic acid is higher than that of cysteine, and the ΔE value between the PES structural unit and cysteine is higher than that of the other two molecules. The filtration flux attenuation and membrane fouling index of the three pollutants on ultrafiltration membrane confirmed that MD had higher fouling properties to SA and HA on PVDF membrane, while BSA was more likely to produce membrane fouling on PES membrane. The ΔE values between 6-carboxyglucose, salicylic acid, cysteine and the three polymer units were linearly fitted with the initial flux attenuation rate of SA, HA, BSA ultrafiltration operation. The fitting coefficients were 0.9981, 0.9555, 0.7186, respectively, which indicated that cysteine as a protein representative has some shortcomings in molecular simulation.
-
Key words:
- membrane /
- ultrafiltration /
- molecular simulation /
- secondary effluent /
- membrane fouling
-
-
[1] 王旭东, 唐婧, 王磊, 等. 纳米TiO2光催化-超滤法处理模拟二级出水[J]. 环境工程学报, 2016, 10(4):1615-1620. WANG X D, TANG J, WANG L, et al. Treatment of simulated secondary effluent with a method of nano-TiO2 photocatalysis and ultrafiltration membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(4):1615-1620(in Chinese).
[2] 王利颖, 石洁, 王凯伦, 等. 碳纳米管改性PVDF中空纤维超滤膜处理二级出水抗污染性能研究[J]. 环境科学, 2017, 38(1):220-228. WANG L Y, SHI J, WANG K L, et al. Effect of PVDF hollow fiber ultrafiltration membranes modification with carbonnanotube on membrane fouling control during ultrafiltration of sewage effluent[J]. Environmental Science, 2017, 38(1):220-228(in Chinese).
[3] 孟晓荣, 王璁桧, 王磊. 染料探针技术对二级出水中优势污染物的定量检测[J]. 环境科学, 2018, 39(2):852-858. MENG X R, WANG C H, WANG L, et al. Quantitative analysis of dominant pollutants in secondary effluent via dye probe technology[J]. Environmental Science, 2018, 39(2):852-858(in Chinese).
[4] 王磊, 冯玲, 王旭东,等. 二级出水残留有机物对PVDF超滤膜污染行为研究[J]. 哈尔滨工业大学学报, 2014, 46(4):105-109. WANG L, FENG L, WANG X, et al. Fouling behavior of residual organic matters of secondary effluent on PVDF UF membrane[J]. Journal of Harbin Institute of Technology, 2014, 46(4):105-109(in Chinese).
[5] 孟晓荣, 张海珍, 王磊, 等. 城市污水二级出水超滤膜污染与膜特性的研究[J]. 环境科学, 2013, 34(5):1822-1827. MENG X R, ZHANG H Z, WANG L, et al. Membrane fouling by secondary effluent of urban sewage and the membrane properties[J]. Environmental Science, 2013, 34(5):1822-1827(in Chinese).
[6] SHIRATO M, ARAGAKI T, IRITANI E. Blocking filtration laws for filtration of power-law non-Newtonian fluids[J]. Journal of Chemical Engineering of Japan, 2006, 12(2):162-164. [7] 许振良, 李鲜日, 周颖. 超滤-微滤膜过滤传质理论的研究进展[J]. 膜科学与技术, 2008, 28(4):1-8. XU Z L, LI X R, ZHOU Y. Research progress of ultrafiltration-microfiltration membrane filtration theory[J]. Membrane Science and Technology, 2008, 28(4):1-8(in Chinese).
[8] BEICHA A, ZAAMOUCHE R, SULAIMAN N M. Dynamic ultrafiltration model based on concentration polarization-cake layer interplay[J]. Desalination, 2009, 242(1):138-148. [9] 康锴, 卢滇楠, 张敏莲, 等. 动态Monte Carlo模拟蛋白质与微滤膜相互作用及其对微滤过程的影响[J]. 化工学报, 2007, 58(12):3011-3018. KANG K, LU D N, ZHANG M L, et al. Dynamic Monte Carlo simulation of protein-membrane interaction and its implication on micro-filtration process[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(12):3011-3018(in Chinese).
[10] 王俊, 朱宇, 陆小华. 分子模拟在聚合物膜研究中的应用[J]. 现代化工, 2003, 23(10):59-62. WANG J, ZHU Y, LU X H. Application of molecular simulation in polymeric membrane science[J]. Modern Chemical Industry, 2003, 23(10):59-62(in Chinese).
[11] MCCAMMON J A, GELIN B R, KARPLUS M. Dynamics of folded proteins[J]. Nature, 1977, 267(5612):585-590. [12] YAO L, QIN Z, CHEN Q, et al. Insights into the nanofiltration separation mechanism of monosaccharides by molecular dynamics simulation[J]. Separation & Purification Technology, 2018, 205:48-57. [13] WEI Q, ZHANG Y, WANG Y, et al. Measurement and modeling of the effect of composition ratios on the properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) membranes[J]. Materials & Design, 2016, 103:249-258. [14] CHANG K S, WANG Y L, KANG C H, et al. Molecular dynamics simulations of polymeric structure and alcohol-membrane surface affinity of aromatic polyamide membranes[J]. Journal of Membrane Science, 2011, 382(1-2):30-40. [15] LUO Y, HARDER E, FAIBISH R S, et al. Computer simulations of water flux and salt permeability of the reverse osmosis FT-30 aromatic polyamide membrane[J]. Journal of Membrane Science, 2011, 384(1-2):1-9. [16] HARDER E, WALTERS D E, BODNAR Y D, et al. Molecular dynamics study of a polymeric reverse osmosis membrane[J]. Journal of Physical Chemistry B, 2009, 113(30):10177-10182. [17] JERMANN D, PRONK W, MEYLAN S. Interplay of different NOM fouling mechanisms during ultrafilration for drinking water production[J]. Water Research, 2007, 41(8), 1713-1722. [18] 詹劲, 张敏莲, 刘铮, 等. 膜材料与生物分子相互作用的分子模拟[J]. 化工学报, 2005, 56(11):2157-2161. ZHAN, ZHANG M, LIU Z. Molecular simulation of interaction between membrane material and biomolecules[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(11):2157-2161(in Chinese).
[19] 孟晓荣, 鲁冰雪, 付东会, 等. 两亲性共聚物共混PVDF超滤膜的界面性质与抗蛋白质污染的研究[J]. 环境科学, 2016, 37(6):2179-2186. MENG X R, LU B X, FU D H, et al. Interfacial property of amphiphilic copolymer blending PVDF UF membrane and protein anti-fouling[J]. Environmental Science, 2016, 37(6):2179-2186(in Chinese).
[20] 华耀祖. 超滤技术与应用[M]. 北京:化学工业出版社, 2004. HUA Y Z. Ultrafiltration Technology and its Application[M]. Beijing:Chemical Industry Press, 2004(in Chinese) [21] GAO H, SUN X, GAO C. Antifouling polysulfone ultrafiltration membranes with sulfobetaine polyimides as novel additive for the enhancement of both water flux and protein rejection[J]. Journal of Membrane Science, 2017, 542:81-90 [22] CORNELL W D, CIEPLAK P, BAYLY C I., et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society, 1995, 117(19):5179-5197. [23] WEINER S J., KOLLMAN P A., NGUYEN D T., et al. An all atom force field for simulations of proteins and nucleic acids[J]. Journal of Computational Chemistry, 1986, 7(2):230-252. [24] DAI Z, XU M, ZHOU H. Molecular simulation studies on adsorption of benzoic acid amine salt over wax surface[J]. Petroleum Processing & Petrochemicals, 1999, 30(12):42-45. [25] ZHOU H, JING Z, XU M. Molecular simulation studies on the compatibility of template agents and TS-1 structure[J]. Acta Petrolei Sinica, 2000, 16(4):43-47. [26] MIAO R, WANG L, WANG X. Preparation of a polyvinylidene fluoride membrane material probe and its application in membrane fouling research[J]. Desalination, 2015, 357:171-177. [27] 吴云剑. 分子动力学模拟在几类重要蛋白研究中的应用[D]. 长春:吉林大学,2014:1-14. WU Y J. Applications of molecular dynamics simulations in research about some important proteins[D]. Changchun:Jilin University,2014:1 -14(in Chinese).
[28] 肖萍, 肖峰, 赵锦辉,等. 采用膜污染指数评估天然有机物在低压超滤膜中的污染行为[J]. 环境科学, 2012, 33(12):4322-4328. XIAO P, XIAO F, ZHAO J H, et al. A novel approach using a fouling index to evaluate NOM fouling behavior in a low pressure ultrafiltration process[J]. Environmental Science, 2012, 33(12):4322-4328(in Chinese).
[29] MADAENI S S, SEDEH N S, NOBILI D M. Ultrafiltration of humic substances in the presence of protein and metal ions[J]. Transport in Porous Media, 2006, 65:469-484. [30] WANG L, MIAO R, WANG X, et al. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes:Characterization from microforces[J]. Environmental Science & Technology, 2013, 47(8):3708-3714. -

计量
- 文章访问数: 2653
- HTML全文浏览数: 2653
- PDF下载数: 115
- 施引文献: 0