二级出水典型污染物超滤膜污染行为的分子动力学模拟研究

孟晓荣, 陈嘉智, 杨胜, 吕永涛, 唐卫婷. 二级出水典型污染物超滤膜污染行为的分子动力学模拟研究[J]. 环境化学, 2020, (2): 397-408. doi: 10.7524/j.issn.0254-6108.2019031108
引用本文: 孟晓荣, 陈嘉智, 杨胜, 吕永涛, 唐卫婷. 二级出水典型污染物超滤膜污染行为的分子动力学模拟研究[J]. 环境化学, 2020, (2): 397-408. doi: 10.7524/j.issn.0254-6108.2019031108
MENG Xiaorong, CHEN Jiazhi, YANG Sheng, LV Yongtao, TANG Weiting. Molecular dynamics simulation of membrane fouling by typical pollutants in secondary effluent[J]. Environmental Chemistry, 2020, (2): 397-408. doi: 10.7524/j.issn.0254-6108.2019031108
Citation: MENG Xiaorong, CHEN Jiazhi, YANG Sheng, LV Yongtao, TANG Weiting. Molecular dynamics simulation of membrane fouling by typical pollutants in secondary effluent[J]. Environmental Chemistry, 2020, (2): 397-408. doi: 10.7524/j.issn.0254-6108.2019031108

二级出水典型污染物超滤膜污染行为的分子动力学模拟研究

    通讯作者: 孟晓荣, E-mail: mxr5@163.com
  • 基金项目:

    陕西省重点产业链(群)项目(2017ZDCXL-GY-07-03),西安市科技创新引导项目(201805033YD11CG17(4)),陕西省水务集团水务科技项目(2018SWAG0202)和碑林区科技计划项目(2017KCT-19-01)资助.

Molecular dynamics simulation of membrane fouling by typical pollutants in secondary effluent

    Corresponding author: MENG Xiaorong, mxr5@163.com
  • Fund Project: Supported by the Key Industrial Chain Project of Shaanxi Province (2017ZDCXL-GY-07-03), Xi'an Science and Technology Project(201805033YD11CG17(4)), Water Science and Technology Project of Shaanxi Water Group (2018SWAG0202)and Beilin Science and Technology Plan Project (2017KCT-19-01).
  • 摘要: 以6-羧基葡萄糖、半胱氨酸和水杨酸分别代表二级出水的3种典型污染物多糖(SA)、蛋白质(BSA)和腐殖酸(HA)的分子组成,通过分子动力学(MD)技术,模拟了二级出水典型污染物,与醋酸纤维素(CA)、聚醚砜(PES)、聚偏氟乙烯(PVDF)等3种主流商业膜材料之间的结合能(ΔE),作为对具有特征污染物性质的二级出水,在不同的膜材料上产生膜污染行为的判断依据.MD数据显示:PVDF结构单元与6-羧基葡萄糖和水杨酸分子间的ΔE高于半胱氨酸,而PES结构单元与半胱氨酸分子间的ΔE值高于其它分子间的组合.3种污染物在超滤膜上的过滤通量衰减及膜污染指数,证实了MD对PVDF膜上SA和HA污染性更高,而BSA在PES膜上更易产生膜污染的预测结论;分别对6-羧基葡萄糖、水杨酸、半胱氨酸与3种聚合物结构单元间的ΔE值,与SA、HA、BSA的超滤操作初始通量衰减率间进行了线性拟合,得到的拟合系数分别为0.9981、0.9555、0.7186,说明半胱氨酸作为蛋白质类代表物进行分子模拟尚有一定的不足.
  • 加载中
  • [1] 王旭东, 唐婧, 王磊, 等. 纳米TiO2光催化-超滤法处理模拟二级出水[J]. 环境工程学报, 2016, 10(4):1615-1620.

    WANG X D, TANG J, WANG L, et al. Treatment of simulated secondary effluent with a method of nano-TiO2 photocatalysis and ultrafiltration membrane[J]. Chinese Journal of Environmental Engineering, 2016, 10(4):1615-1620(in Chinese).

    [2] 王利颖, 石洁, 王凯伦, 等. 碳纳米管改性PVDF中空纤维超滤膜处理二级出水抗污染性能研究[J]. 环境科学, 2017, 38(1):220-228.

    WANG L Y, SHI J, WANG K L, et al. Effect of PVDF hollow fiber ultrafiltration membranes modification with carbonnanotube on membrane fouling control during ultrafiltration of sewage effluent[J]. Environmental Science, 2017, 38(1):220-228(in Chinese).

    [3] 孟晓荣, 王璁桧, 王磊. 染料探针技术对二级出水中优势污染物的定量检测[J]. 环境科学, 2018, 39(2):852-858.

    MENG X R, WANG C H, WANG L, et al. Quantitative analysis of dominant pollutants in secondary effluent via dye probe technology[J]. Environmental Science, 2018, 39(2):852-858(in Chinese).

    [4] 王磊, 冯玲, 王旭东,等. 二级出水残留有机物对PVDF超滤膜污染行为研究[J]. 哈尔滨工业大学学报, 2014, 46(4):105-109.

    WANG L, FENG L, WANG X, et al. Fouling behavior of residual organic matters of secondary effluent on PVDF UF membrane[J]. Journal of Harbin Institute of Technology, 2014, 46(4):105-109(in Chinese).

    [5] 孟晓荣, 张海珍, 王磊, 等. 城市污水二级出水超滤膜污染与膜特性的研究[J]. 环境科学, 2013, 34(5):1822-1827.

    MENG X R, ZHANG H Z, WANG L, et al. Membrane fouling by secondary effluent of urban sewage and the membrane properties[J]. Environmental Science, 2013, 34(5):1822-1827(in Chinese).

    [6] SHIRATO M, ARAGAKI T, IRITANI E. Blocking filtration laws for filtration of power-law non-Newtonian fluids[J]. Journal of Chemical Engineering of Japan, 2006, 12(2):162-164.
    [7] 许振良, 李鲜日, 周颖. 超滤-微滤膜过滤传质理论的研究进展[J]. 膜科学与技术, 2008, 28(4):1-8.

    XU Z L, LI X R, ZHOU Y. Research progress of ultrafiltration-microfiltration membrane filtration theory[J]. Membrane Science and Technology, 2008, 28(4):1-8(in Chinese).

    [8] BEICHA A, ZAAMOUCHE R, SULAIMAN N M. Dynamic ultrafiltration model based on concentration polarization-cake layer interplay[J]. Desalination, 2009, 242(1):138-148.
    [9] 康锴, 卢滇楠, 张敏莲, 等. 动态Monte Carlo模拟蛋白质与微滤膜相互作用及其对微滤过程的影响[J]. 化工学报, 2007, 58(12):3011-3018.

    KANG K, LU D N, ZHANG M L, et al. Dynamic Monte Carlo simulation of protein-membrane interaction and its implication on micro-filtration process[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(12):3011-3018(in Chinese).

    [10] 王俊, 朱宇, 陆小华. 分子模拟在聚合物膜研究中的应用[J]. 现代化工, 2003, 23(10):59-62.

    WANG J, ZHU Y, LU X H. Application of molecular simulation in polymeric membrane science[J]. Modern Chemical Industry, 2003, 23(10):59-62(in Chinese).

    [11] MCCAMMON J A, GELIN B R, KARPLUS M. Dynamics of folded proteins[J]. Nature, 1977, 267(5612):585-590.
    [12] YAO L, QIN Z, CHEN Q, et al. Insights into the nanofiltration separation mechanism of monosaccharides by molecular dynamics simulation[J]. Separation & Purification Technology, 2018, 205:48-57.
    [13] WEI Q, ZHANG Y, WANG Y, et al. Measurement and modeling of the effect of composition ratios on the properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) membranes[J]. Materials & Design, 2016, 103:249-258.
    [14] CHANG K S, WANG Y L, KANG C H, et al. Molecular dynamics simulations of polymeric structure and alcohol-membrane surface affinity of aromatic polyamide membranes[J]. Journal of Membrane Science, 2011, 382(1-2):30-40.
    [15] LUO Y, HARDER E, FAIBISH R S, et al. Computer simulations of water flux and salt permeability of the reverse osmosis FT-30 aromatic polyamide membrane[J]. Journal of Membrane Science, 2011, 384(1-2):1-9.
    [16] HARDER E, WALTERS D E, BODNAR Y D, et al. Molecular dynamics study of a polymeric reverse osmosis membrane[J]. Journal of Physical Chemistry B, 2009, 113(30):10177-10182.
    [17] JERMANN D, PRONK W, MEYLAN S. Interplay of different NOM fouling mechanisms during ultrafilration for drinking water production[J]. Water Research, 2007, 41(8), 1713-1722.
    [18] 詹劲, 张敏莲, 刘铮, 等. 膜材料与生物分子相互作用的分子模拟[J]. 化工学报, 2005, 56(11):2157-2161.

    ZHAN, ZHANG M, LIU Z. Molecular simulation of interaction between membrane material and biomolecules[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(11):2157-2161(in Chinese).

    [19] 孟晓荣, 鲁冰雪, 付东会, 等. 两亲性共聚物共混PVDF超滤膜的界面性质与抗蛋白质污染的研究[J]. 环境科学, 2016, 37(6):2179-2186.

    MENG X R, LU B X, FU D H, et al. Interfacial property of amphiphilic copolymer blending PVDF UF membrane and protein anti-fouling[J]. Environmental Science, 2016, 37(6):2179-2186(in Chinese).

    [20] 华耀祖. 超滤技术与应用[M]. 北京:化学工业出版社, 2004. HUA Y Z. Ultrafiltration Technology and its Application[M]. Beijing:Chemical Industry Press, 2004(in Chinese)
    [21] GAO H, SUN X, GAO C. Antifouling polysulfone ultrafiltration membranes with sulfobetaine polyimides as novel additive for the enhancement of both water flux and protein rejection[J]. Journal of Membrane Science, 2017, 542:81-90
    [22] CORNELL W D, CIEPLAK P, BAYLY C I., et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society, 1995, 117(19):5179-5197.
    [23] WEINER S J., KOLLMAN P A., NGUYEN D T., et al. An all atom force field for simulations of proteins and nucleic acids[J]. Journal of Computational Chemistry, 1986, 7(2):230-252.
    [24] DAI Z, XU M, ZHOU H. Molecular simulation studies on adsorption of benzoic acid amine salt over wax surface[J]. Petroleum Processing & Petrochemicals, 1999, 30(12):42-45.
    [25] ZHOU H, JING Z, XU M. Molecular simulation studies on the compatibility of template agents and TS-1 structure[J]. Acta Petrolei Sinica, 2000, 16(4):43-47.
    [26] MIAO R, WANG L, WANG X. Preparation of a polyvinylidene fluoride membrane material probe and its application in membrane fouling research[J]. Desalination, 2015, 357:171-177.
    [27] 吴云剑. 分子动力学模拟在几类重要蛋白研究中的应用[D]. 长春:吉林大学,2014:1-14. WU Y J. Applications of molecular dynamics simulations in research about some important proteins[D]. Changchun:Jilin University,2014:1

    -14(in Chinese).

    [28] 肖萍, 肖峰, 赵锦辉,等. 采用膜污染指数评估天然有机物在低压超滤膜中的污染行为[J]. 环境科学, 2012, 33(12):4322-4328.

    XIAO P, XIAO F, ZHAO J H, et al. A novel approach using a fouling index to evaluate NOM fouling behavior in a low pressure ultrafiltration process[J]. Environmental Science, 2012, 33(12):4322-4328(in Chinese).

    [29] MADAENI S S, SEDEH N S, NOBILI D M. Ultrafiltration of humic substances in the presence of protein and metal ions[J]. Transport in Porous Media, 2006, 65:469-484.
    [30] WANG L, MIAO R, WANG X, et al. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes:Characterization from microforces[J]. Environmental Science & Technology, 2013, 47(8):3708-3714.
  • 加载中
计量
  • 文章访问数:  2039
  • HTML全文浏览数:  2039
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-11

二级出水典型污染物超滤膜污染行为的分子动力学模拟研究

    通讯作者: 孟晓荣, E-mail: mxr5@163.com
  • 1. 西安建筑科技大学化学与化工学院, 西安, 710055;
  • 2. 西安建筑科技大学环境与市政工程学院, 西安, 710055;
  • 3. 陕西省膜分离技术研究院, 西安, 710055
基金项目:

陕西省重点产业链(群)项目(2017ZDCXL-GY-07-03),西安市科技创新引导项目(201805033YD11CG17(4)),陕西省水务集团水务科技项目(2018SWAG0202)和碑林区科技计划项目(2017KCT-19-01)资助.

摘要: 以6-羧基葡萄糖、半胱氨酸和水杨酸分别代表二级出水的3种典型污染物多糖(SA)、蛋白质(BSA)和腐殖酸(HA)的分子组成,通过分子动力学(MD)技术,模拟了二级出水典型污染物,与醋酸纤维素(CA)、聚醚砜(PES)、聚偏氟乙烯(PVDF)等3种主流商业膜材料之间的结合能(ΔE),作为对具有特征污染物性质的二级出水,在不同的膜材料上产生膜污染行为的判断依据.MD数据显示:PVDF结构单元与6-羧基葡萄糖和水杨酸分子间的ΔE高于半胱氨酸,而PES结构单元与半胱氨酸分子间的ΔE值高于其它分子间的组合.3种污染物在超滤膜上的过滤通量衰减及膜污染指数,证实了MD对PVDF膜上SA和HA污染性更高,而BSA在PES膜上更易产生膜污染的预测结论;分别对6-羧基葡萄糖、水杨酸、半胱氨酸与3种聚合物结构单元间的ΔE值,与SA、HA、BSA的超滤操作初始通量衰减率间进行了线性拟合,得到的拟合系数分别为0.9981、0.9555、0.7186,说明半胱氨酸作为蛋白质类代表物进行分子模拟尚有一定的不足.

English Abstract

参考文献 (30)

目录

/

返回文章
返回