“热水洗+臭氧氧化”联合工艺处理大颗粒油基岩屑

陈红硕, 刘阳生. “热水洗+臭氧氧化”联合工艺处理大颗粒油基岩屑[J]. 环境化学, 2020, (2): 388-396. doi: 10.7524/j.issn.0254-6108.2019030801
引用本文: 陈红硕, 刘阳生. “热水洗+臭氧氧化”联合工艺处理大颗粒油基岩屑[J]. 环境化学, 2020, (2): 388-396. doi: 10.7524/j.issn.0254-6108.2019030801
CHEN Hongshuo, LIU Yangsheng. Treatment of large particle oil-based cuttings by the combined process of hot water washing and ozone oxidation[J]. Environmental Chemistry, 2020, (2): 388-396. doi: 10.7524/j.issn.0254-6108.2019030801
Citation: CHEN Hongshuo, LIU Yangsheng. Treatment of large particle oil-based cuttings by the combined process of hot water washing and ozone oxidation[J]. Environmental Chemistry, 2020, (2): 388-396. doi: 10.7524/j.issn.0254-6108.2019030801

“热水洗+臭氧氧化”联合工艺处理大颗粒油基岩屑

    通讯作者: 刘阳生, E-mail: ysliu@pku.edu.cn
  • 基金项目:

    国家自然科学基金(21077002)资助.

Treatment of large particle oil-based cuttings by the combined process of hot water washing and ozone oxidation

    Corresponding author: LIU Yangsheng, ysliu@pku.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21077002).
  • 摘要: 针对油基岩屑处理过程中的大颗粒部分(0.5-1 cm),研究了以"热水洗+臭氧氧化"为核心的联合工艺的处理效果,并分别对热水洗、臭氧氧化环节的工艺参数进行了优化.结果表明,在最优条件下,经过处理后的油基岩屑的含油率可由15.8%降低到0.24%,达到了GB 4284-2018中规定的处置要求,处理过程中回收的油分可重新用于配制钻井液.通过对油基岩屑固相的表征发现,其具备臭氧催化氧化催化剂的明显特征,是一种天然的臭氧催化氧化催化剂,并从反应动力学角度对臭氧氧化环节的反应特性进行了定量分析.结果表明,其满足准一级反应动力学特征,反应活化能为14.421 kJ·mol-1.以"热水洗+臭氧氧化"为核心的联合工艺为大颗粒油基岩屑的无害化、资源化处理提供了一种参考.
  • 加载中
  • [1] 王猛. 我国页岩气勘探开发现状及发展前景分析[J]. 勘探开发,2017,24(7):150-151.

    WANG M.The present situation and development prospect of shale gas exploration and development in China are analyzed[J]. Exploration and Development, 2017, 24(7):150-151(in Chinese).

    [2] 罗振华, 梁泊, 李虎, 等. 我国页岩气开发环境影响评价模型研究[J]. 现代化工,2017,37(11):10-16.

    LUO Z H, LIANG B, LI H, et a1. Research on environmental impact evaluation model for shale gas development in China[J].Modern Chemical Industry, 2017, 37(11):10-16(in Chinese).

    [3] YUAN J H, LUO D K, XIA L Y, et a1. Policy recommendations to promote shale gas development in China based on a technical and economic evaluation[J]. Energy Policy, 2015, 85:194-206.
    [4] 蔡仁平, 敖丽英. 环境风险在页岩气勘探开发的探究[J]. 工程建设与设计,2017,16(12):33-34.

    CAI R P, AO L Y. The exploration and development of environmental risk in shale gas[J]. Engineering Construction and Design, 2017, 16(12):33-34(in Chinese).

    [5] 孔朝阳, 董秀成, 蒋庆哲, 等. 我国页岩气开发的能源投入回报研究-以涪陵页岩气为例[J]. 生态经济,2018,34(11):153-158.

    KONG Z Y, DONG X C, JIANG Q Z, et a1. Estimation of the energy return on investment of China's shale gas:Acase study of Fuling shale gas[J]. Ecological Economy, 2018, 34(11):153-158(in Chinese).

    [6] 李开环. 涪陵地区页岩气开采固体废物污染特性及资源化环境风险研究[D].重庆:重庆交通大学,2018. LI K H. Study on solid waste pollution characteristics and resource environmental risk of shale gas exploitation in Fuling area[D]. Chongqing:Chongqing Jiaotong University, 2018(in Chinese).
    [7] 钱炜, 杨海蓉, 刘宏立, 等. 油基岩屑无害化处理技术研究[J]. 环境科学与管理,2018,43(2):121-125.

    QIAN W, YANG H R, LIU H L, et a1. Discussion on oily cuttings non-hazardous treatment technology[J]. Environmental Science and Management, 2018, 43(2):121-125(in Chinese).

    [8] MONIKA D, ANIL K, ANJANA J, et al. Assessment of hydrocarbon degradation potentials in a plant-microbe interaction system with oil sludge contamination:A sustainable solution[J]. International Journal of Phytoremediation, 2017, 19(12):1085-1092.
    [9] 卢邦俊. 页岩气钻屑中的重金属成分研究[J]. 能源环境保护,2015,29(6):33-34.

    LU B J. Study on the content of heavy metals in drilling chips from exploitation of shale gas[J].Energy and Environmental Protection, 2015, 29(6):33-34(in Chinese).

    [10] 苏勤, 何青水, 张辉, 等. 国外陆上钻井废弃物处理技术[J]. 石油钻探技术,2010,12(9):106-110.

    SU Q, HE Q S, ZHANG H, et al. Foreign onshore drilling waste treatment technology[J]. Oil Drilling Technology, 2010, 12(9):106-110(in Chinese).

    [11] 丛培超, 秦宗伦, 刘阳, 等. 页岩气钻井平台含油废弃物治理技术研讨[J]. 环保钻井液,2014,12(6):144-150.

    CONG P C, QING Z L, LIU Y, et al. Research on the treatment technology of oil-bearing wastes in shale gas drilling platform[J]. Environmental Drilling Fluid, 2014, 12(6):144-150(in Chinese).

    [12] 孙根行, 王丽芳, 符丹, 等. 废弃油基钻井岩屑焚烧处理基础[J]. 钻井液与完井液,2017,34(3):59-63.

    SUN G X,WANG L F, FU D, et al. Burning of drill cuttings from wells drilled with waste oil base drilling fluid[J]. Drilling Fluid and Completion Fluid, 2017, 34(3):59-63(in Chinese).

    [13] 郑婷婷, 涂妹, 刘莎丽, 等. 含油钻屑热解析及焚烧处理技术研究[J]. 化工管理,2015,2(4):146-147.

    ZHENG T T, TU M, LIU S L, et al. Study on thermal analysis and incineration technology of oil-bearing cuttings[J].Chemical Management, 2015, 2(4):146-147(in Chinese).

    [14] 谢水祥, 蒋官澄, 陈勉, 等. 利用化学强化分离-无害化技术处理废弃油基钻井液[J]. 环境工程学报,2011,5(2):425-430.

    XIE S X, JIANG G C, CHEN M, et al. Using chemical strengthening separation-harmless technology for the treatment of waste oil-based drilling fluid[J]. Chinese Journal of Environmental Engineering, 2011, 5(2):425-430(in Chinese).

    [15] 张博廉, 操卫平, 赵继伟, 等. 油基钻井岩屑处理技术展望[J]. 当代化工,2014,5(12):2603-2605.

    ZHANG B L, CAO W P, ZHAO J W, et al. Prospect of oil-base drilling cuttings processing technologies[J]. Modern Chemical Industry, 2014, 5(12):2603-2605(in Chinese).

    [16] 陈政阳, 刘国, 唐彬彬, 等. 油基泥浆钻井岩屑中高效石油降解菌的筛选及其降解特性[J]. 环境工程,2018,36(2):48-53.

    CHEN Z Y, LIU G, TANG B B, et al. Isolation of degrading bacteria from oi-base mud drilling cuttings and its degrading characteristics[J]. Environmental Engineering, 2018, 36(2):48-53(in Chinese).

    [17] 杜娇, 罗廷, 王雅璇, 等. 不同锯木粉加量下油基钻井岩屑的微生物效果研究[J]. 石化技术,2018,25(1):157-158.

    DU J, LUO T, WANG Y X, et al. Study on the microbial remediation effect of oil-based drilling cuttings with different saw-wood powder[J]. Petrochemical Technology, 2018, 25(1):157-158(in Chinese).

    [18] 李赵, 杜国勇, 朱盟翔, 等. 超临界CO2萃取废弃油基钻屑的实验研究[J]. 石油与天然气化工,2016,45(3):93-96.

    LI Z, DU G Y, ZHU M X, et al. Experimental study on waste oil-based drilling cuttings by utilizing supercritical carbon dioxide extraction technology[J]. Chemical Engineering of Oil and Gas, 2016, 45(3):93-96(in Chinese).

    [19] 单海霞, 何焕杰, 王中华, 等. 咪唑类离子液体对油基钻屑的处理[J]. 环境工程学报,2017,11(3):1837-1841.

    SHAN H X, HE H J, WANG Z H, et al. Treatment of oil-based drilling cuttings with imidazolium ionic liquids[J]. Chinese Journal of Environmental Engineering, 2017, 11(3):1837-1841(in Chinese).

    [20] 余锦涛, 宋一帆, 谭树波, 等. 钻井岩屑废弃物固化稳定化技术研究[J]. 应用化工,2017,46(8):1545-1548.

    YU J T, SONG Y F, TAN S B, et al. Research on stabilization/solidification technology of waste drilling cuttings[J]. Applied Chemical Industry, 2017, 46(8):1545-1548(in Chinese).

    [21] 赵文彬. 破乳压滤式钻井液随钻处理技术及应用研究[J]. 石油机械,2017,45(4):36-39.

    ZHAO W B. Technology of mud treatment while drilling through demulsification and filter-pressing[J]. China Petroleum Machinery, 2017, 45(4):36-39(in Chinese).

    [22] 国家市场监督管理总局, 中国国家标准化管理委员会. 农用污泥污染物控制标准:GB 4284-2018[S]. 北京:中国标准出版社,2018.
    [23] 仝坤, 宋启辉, 刘光全. 固废及土壤含油量检测方法研究进展[J]. 油气田环境保护,2017,27(6):5-7.

    TONG K, SONG Q H, LIU G Q. Research progress of oil content detection method in solid waste and soil[J]. Environmental Protection of Oil and Gas Fields, 2017, 27(6):5-7(in Chinese).

    [24] AZIM A A A, ABDUL-RAHEIM A R M, KAMEL R K, et al. Demulsifier systems applied to breakdown petroleum sludge[J]. Journal of Petroleum Science and Engineering, 2011, 78(2):364-370.
    [25] KHAIRUTDINOV V F, AKHMETZYANOV T R, GABITOV F R, et al. Extraction of oil-products from oil sludge with the use of liquid and supercritical fluid extraction processes with propane-butane extractant[J]. Petroleum Science and Technology, 2016, 34(4):372-378.
    [26] 秦宏, 马金鞍, 王擎, 等. 热化学清洗与溶剂萃取法处理页岩油泥[J]. 环境工程学报,2016,10(2):851-857.

    QIN H, MA J A,WANG Q, et al. Treatment of oil shale sludge using solvent extraction and thermo-chemistry[J]. Chinese Journal of Environmental Engineering, 2016, 10(2):851-857(in Chinese).

    [27] ALTENOR S, CARENE B, EMMANUEL E, et al. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation[J]. Journal of Hazardous Materials, 2009, 165(1-3):1029-1039.
    [28] GOTTSCHALK C, LOBRA J A, SAUPE A. Ozonation of water and wastewater[M]. Wiley-VCH, 2000.
    [29] WANG D, XU H D, MA J, et al. Strong promoted catalytic ozonation of atrazine at low temperature using tourmaline as catalyst:Influencing factors, reaction mechanisms and pathways[J]. Chemical Engineering Journal, 2018, 354(6):113-125.
    [30] ZHANG T, MA J. Catalytic ozonation of trace nitrobenzene in water with synthetic goethite[J]. Journal of Molecular Catalysis A:Chemical, 2008, 279(1):82-89.
    [31] TISA F, RAMAN A A A, DAUD W M A W. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes:A review[J]. Journal of Environmental Management, 2014, 146(4):260-275.
  • 加载中
计量
  • 文章访问数:  1799
  • HTML全文浏览数:  1799
  • PDF下载数:  38
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-08

“热水洗+臭氧氧化”联合工艺处理大颗粒油基岩屑

    通讯作者: 刘阳生, E-mail: ysliu@pku.edu.cn
  • 北京大学环境科学与工程学院, 北京, 100871
基金项目:

国家自然科学基金(21077002)资助.

摘要: 针对油基岩屑处理过程中的大颗粒部分(0.5-1 cm),研究了以"热水洗+臭氧氧化"为核心的联合工艺的处理效果,并分别对热水洗、臭氧氧化环节的工艺参数进行了优化.结果表明,在最优条件下,经过处理后的油基岩屑的含油率可由15.8%降低到0.24%,达到了GB 4284-2018中规定的处置要求,处理过程中回收的油分可重新用于配制钻井液.通过对油基岩屑固相的表征发现,其具备臭氧催化氧化催化剂的明显特征,是一种天然的臭氧催化氧化催化剂,并从反应动力学角度对臭氧氧化环节的反应特性进行了定量分析.结果表明,其满足准一级反应动力学特征,反应活化能为14.421 kJ·mol-1.以"热水洗+臭氧氧化"为核心的联合工艺为大颗粒油基岩屑的无害化、资源化处理提供了一种参考.

English Abstract

参考文献 (31)

目录

/

返回文章
返回