微波水热法制备ZnO-还原氧化石墨烯纳米复合材料及其光催化性能
Microwave hydrothermal synthesis and photocatalytic properties of ZnO-reduced graphene oxide nanocomposites
-
摘要: 通过快速沉淀-NaBH4微波水热还原制备了ZnO-还原氧化石墨烯(RGO)纳米复合物.采用X射线衍射(XRD)、激光拉曼光谱(Raman)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和光致发光(PL)等测试手段对复合光催化剂进行表征.结果表明,复合材料中的氧化锌为六方晶系纤锌矿结构,并均匀覆盖在RGO表面上,其直径大约为15-20 nm.ZnO-RGO复合材料的光催化性能明显优于氧化锌,为纯ZnO的2.5倍.光催化性能提高可能归因于RGO优良的电子传输能力加速了ZnO-RGO纳米材料光生载流子的分离效率.Abstract: In this paper, ZnO-reduced graphene oxide RGO nanocomposite was prepared by a rapid precipitation-microwave hydrothermal method using NaBH4 as the reducing agent. The as-synthesized photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL). The results show that the ZnO nanoparticles in the composite had a diameter of about 15-20 nm with hexagonal wurtzite structure, and were uniformly anchored on the graphene surface. The introduction of graphene improved the photocatalytic performance of zinc oxide. When the graphene content was 1%, the photocatalytic reaction rate constant of ZnO-RGO was the largest, which is 2.5 times that of ZnO. This may be attributed to the reason that graphene could effectively suppress the recombination of free electrons and holes in ZnO, resulting in an increase in photocatalytic performance.
-
Key words:
- RGO /
- zinc oxide /
- microwave hydrothermal /
- photocatalytic /
- charge separation
-
[1] KATSNELSON M I. Graphene:carbon in two dimensions[J]. Materials Today, 2007, 10(1):20-27. [2] NOVOSELOV K S A, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200. [3] 邹文斌. 几种无机纳米粒子/(氧化)石墨烯复合材料的制备及性能研究[D]. 南京:南京理工大学, 2011. ZOU W B. Preparation and properties of several inorganic nanoparticles/(oxide) graphene composites[D]. Nanjing:Nanjing University of Science and Technology, 2011(in Chinese). [4] GILJE S, HAN S, WANG M, et al. A chemical route to graphene for device applications[J]. Nano Letters, 2007, 7(11):3394-3398. [5] LI D, KANER R B. Graphene-based materials[J]. Science, 2008, 320(5880):1170-1171. [6] HIURA H, EBBESEN T W, TANIGAKI K. Opening and purification of carbon nanotubes in high yields[J]. Advanced Materials, 1995, 7(3):275-276. [7] 张蓉, 付婧, 罗田, 等. 氧化石墨烯纳米材料的制备及其对Eu(Ⅲ)吸附性能[J]. 环境化学, 2018, 37(4), 798-806. HANG R, FU J, LUO T, et al. Synthesis of graphene oxide nanomaterials and its Eu(Ⅲ) adsorption property[J]. Environmental Chemistry, 2018, 37(4), 798-806(in Chinese).
[8] SASIKALA S P, LIM J, KIM I H, et al. Graphene oxide liquid crystals:A frontier 2D soft material for graphene-based functional materials[J]. Chemical Society Reviews, 2018, 47(16):6013-6045. [9] 万建新, 任学昌, 刘宏伟, 等. ZnO/g-C3N4复合型光催化剂的制备及其光催化性能[J]. 环境化学, 2018, 37(4):792-797. WANJ X, REN X C, LIU H W, et al. Preparation and photocatalytic properties of ZnO/g-C3N4 composite photocatalysts[J]. Environmental Chemistry, 2018, 37(4):792-797(in Chinese).
[10] ANI I J, AKPAN U G, OLUTOYE M A, et al. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2 and ZnO-based photocatalysts:recent development[J]. Journal of Cleaner Production, 2018, 205:930-954. [11] WANG S, ZHU B, LIU M, et al. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Catalysis B:Environmental, 2019, 243:19-26. [12] 朱路平, 黄文娅, 马丽丽, 等. ZnO-CNTs纳米复合材料的制备及性能表征[J]. 物理化学学报, 2006, 22(10):1175-1180. ZHU L P, HUANG W Y, MA L L, et al. Preparation and Characterization of ZnO-CNTs Nanocomposites[J]. Acta Phys. -Sinica, 2006, 22(10):1175-1180(in Chinese).
[13] 杨加明, 韩玲军, 钟丽萍, 等. Ti基ZnO纳米棒阵列的制备及其光催化性能研究[J]. 电化学, 2014, 20(3):288-292. YANG J M, HAN L J, ZHONG L P, et al. Preparation and photocatalytic properties of Ti-based ZnO nanorod arrays[J]. Journal of Electrochemistry, 2014, 20(3):288-292(in Chinese).
[14] WANG G X, YANG J,PARK J S, et al. Facile synthesis and characterization of graphene nanosheets[J]. J Phys Chem C, 2008,112:8192-8195. [15] XU T, ZHANG L, CHENG H, et al. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study[J]. Applied Catalysis B:Environmental, 2011, 101(3-4):382-387. [16] JIANG L, GAO L. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity[J]. Materials Chemistry and Physics, 2005, 91(2):313-316. [17] XIAO-GANG C, YUN-QIU H, QIONG Z, et al. Structure and photocatalytic properties of ZnO/RGO composite[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(11):1953-1959. [18] LI B, CAO H, SHAO J, et al. Improved performances of β-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries[J]. Chemical Communications, 2011, 47(11):3159-3161. [19] WU Z S, REN W, WEN L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6):3187-3194. [20] 杨凯, 余长林, 张丽娜, 等. BiOCl/ZnO异质结型复合光催化剂的水热合成及其光催化性能[J]. 人工晶体学报, 2012, 41(1):171-176. YANG K, YU C L, ZHANG L N, et al. Hydrothermal synthesis and photocatalytic performance of BiOCl/ZnO heterojunction composite photocatalyst[J]. Journal of Synthetic Crystals, 2012, 41(1):171-176(in Chinese).
[21] LIU B X,FU Z X,JIA Y B.Green luminescence center in undoped zinc oxide films deposited on silicon substrates[J].Appl. Phys. Lat. 2001, 79(7):943-946. [22] LI J, MA W, CHEN C, et al. Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation[J]. Journal of Molecular Catalysis A:Chemical, 2007, 261(1):131-138.
计量
- 文章访问数: 2326
- HTML全文浏览数: 2326
- PDF下载数: 49
- 施引文献: 0