热解及超临界水处理废弃液晶面板偏光片的反应机理

王瑞雪, 王燕萍, 马恩, 张承龙. 热解及超临界水处理废弃液晶面板偏光片的反应机理[J]. 环境化学, 2020, (6): 1642-1649. doi: 10.7524/j.issn.0254-6108.2019040905
引用本文: 王瑞雪, 王燕萍, 马恩, 张承龙. 热解及超临界水处理废弃液晶面板偏光片的反应机理[J]. 环境化学, 2020, (6): 1642-1649. doi: 10.7524/j.issn.0254-6108.2019040905
WANG Ruixue, WANG Yanping, MA En, ZHANG Chenglong. Reaction mechanism of waste liquid crystal display panels under pyrolysis and supercritical water treatment conditions[J]. Environmental Chemistry, 2020, (6): 1642-1649. doi: 10.7524/j.issn.0254-6108.2019040905
Citation: WANG Ruixue, WANG Yanping, MA En, ZHANG Chenglong. Reaction mechanism of waste liquid crystal display panels under pyrolysis and supercritical water treatment conditions[J]. Environmental Chemistry, 2020, (6): 1642-1649. doi: 10.7524/j.issn.0254-6108.2019040905

热解及超临界水处理废弃液晶面板偏光片的反应机理

    通讯作者: 王瑞雪, E-mail: rxwang@sspu.edu.cn
  • 基金项目:

    国家自然科学基金(21806102),上海市青年科技英才扬帆计划(18YF1408800)和上海第二工业大学重点学科(XXKZD1602)资助.

Reaction mechanism of waste liquid crystal display panels under pyrolysis and supercritical water treatment conditions

    Corresponding author: WANG Ruixue, rxwang@sspu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21806102), Shanghai Sailing Program (18YF1408800) and Key Discipline of Shanghai Polytechnic University (XXKZD1602).
  • 摘要: 作为废弃液晶面板(LCD)的主要有机组分,偏光片的处置不仅可消除有机污染物对环境的危害,同时也是铟资源回收的必要前处理步骤.本文研究了不同处理条件(热解和超临界水)下偏光片的反应机制,分析并比较了两种反应条件下主要产物的生成机理.在热解条件下,偏光片主要组分三醋酸纤维素(TAC)中三醋酸葡萄糖单体上的酯羰基发生顺式消除反应生成主产物乙酸.在超临界水反应条件下,磷酸三苯酯(TPP)可发生水解反应生成磷酸和苯酚,使体系中氢离子浓度增加,可作为TAC水解的催化剂,TAC则经历四面体过渡态水解生成主产物乙酸.同时,本文对两种处理技术进行了分析和比较,结果表明热解处理具有设备简单、反应条件较温和、反应产物附加值高、易于分离等优点,应作为废弃偏光片的首选处理方法.本文为绿色、高效的回收废弃LCD提供理论基础和实践经验.
  • 加载中
  • [1] 毛学军. 液晶显示技术[M]. 北京:电子工业出版社,2008. MAO X J. Liquid crystal display technology[M]. Beijing:Electronic Industry Press, 2008(in Cinese).
    [2] 电子行业职业技能鉴定指导中心. 液晶显示器件制造技术[M]. 北京:人民邮电出版社, 2009. Electronic Industry Vocational Skill Appraisal Guidance Center. Liquid crystal display devices manufacturing technology[M]. Beijing:Posts and Telecom Press, 2009(in Chinese).
    [3] CHIEN Y C, LIANG C P, SHIH P H. Emission of polycyclic aromatic hydrocarbons from the pyrolysis of liquid crystal wastes[J]. Journal of Hazardous Materials, 2009, 170(2-3):910-914.
    [4] HE Y, MA E, XU Z. Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction[J]. Journal of Hazardous Materials, 2014, 268:185-190.
    [5] LIU Z, XU Z, HUANG H, et al. A study of waste liquid crystal display generation in mainland China[J]. Waste Management & Research, 2016, 34(1):58-66.
    [6] 阮久莉, 郭玉文, 乔琦. 废液晶显示器资源化技术进展及问题与对策[J]. 环境科学与技术, 2016, 39(1):38-43.

    RUAN J L, GUO Y W, QIAO Q. Situation and problems of treatment of waste liquid crystal displays and the countermeasures[J]. Environmental Science & Technology, 2016, 39(1):38-43(in Chinese).

    [7] FERELLA F, BELARDI G, MARSILII A, et al. Separation and recovery of glass, plastic and indium from spent LCD panels[J]. Waste Management, 2017, 60:569-581.
    [8] ZHANG K, WU Y, WANG W, et al. Recycling indium from waste LCDs:A review[J]. Resources Conservation and Recycling, 2015, 104:276-290.
    [9] SILVEIRA A, FUCHS M, PINHEIRO D, et al. Recovery of indium from LCD screens of discarded cell phones[J]. Waste Management, 2015, 45:334-342.
    [10] WANG H, GU Y, WU Y, et al. An evaluation of the potential yield of indium recycled from end-of-life LCDs:A case study in China[J]. Waste Management, 2015, 46:480-487.
    [11] ZHANG L, XU Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment[J]. Journal of Cleaner Production, 2016, 127:19-36.
    [12] ROCCHETTI L, AMATO A, BEOLCHINI F. Recovery of indium from liquid crystal displays[J]. Journal of Cleaner Production, 2016, 116:299-305.
    [13] ZHANG K, LI B, WU Y, et al. Recycling of indium from waste LCD:A promising non-crushing leaching with the aid of ultrasonic wave[J]. Waste Management, 2017, 64:236-243.
    [14] SOUADA M, LOUAGE C, DOISY J, et al. Extraction of indium-tin oxide from end-of-life LCD panels using ultrasound assisted acid leaching[J]. Ultrasonics Sonochemistry, 2018, 40:929-936.
    [15] MA E, LU R, XU Z. An efficient rough vacuum-chlorinated separation method for the recovery of indium from waste liquid crystal display panels[J]. Green Chemistry, 2012, 14:3395-3401.
    [16] ZHANG L, WU B, CHEN Y, et al. Energy and valuable resource recovery from waste liquid crystal display panels by an environment-friendly technological process:Pyrolysis of liquid crystals and preparation of indium product[J]. Journal of Cleaner Production, 2017, 162:141-152.
    [17] ZHANG L, WU B, CHEN Y, et al. Treatment of liquid crystals and recycling indium for stripping product gained by mechanical stripping process from waste liquid crystal display panels[J]. Journal of Cleaner Production, 2017, 162:1472-1481.
    [18] ZHANG L, XU Z. C, H, Cl, and In element cycle in wastes:Vacuum pyrolysis of pvc plastic to recover indium in LCD panels and prepare carbon coating[J]. Acs Sustainable Chemistry & Engineering, 2017, 5:8918-8929.
    [19] RYAN A, O'DONOGHUE, LEWIS H. Characterising components of liquid crystal displays to facilitate disassembly[J]. Journal of Cleaner Production, 2011, 19:1066-1071.
    [20] LEE S, COOPER J. Estimating regional material flows for LCDs//IEEE International Symposium. 2008 IEEE International Symposium on Electronics and the Environment[C]. Washington, DC, 2008:1-6.
    [21] LI J H, GAO S, DUAN H, et al. Recovery of valuable materials from waste liquid crystal display panel[J]. Waste Management, 2009,29:2033-2039.
    [22] 聂耳, 罗兴章, 郑正, 等. 液晶显示器液晶处理与铟回收技术[J]. 环境工程学报, 2008, 2(9):1251-1254.

    NIE E, LUO X Z, ZHENG Z, et al. Treatment of crystal and recovery of indium from liquid crystal display[J]. Chinese Journal of Environmental Engineering, 2008, 2(9):1251-1254(in Chinese).

    [23] ZHUANG X, YE Y, HE W, et al. Hydrothermal treatment of liquid crystal using a batch reactor//Selected Proceedings of the Eighth International Conference on Waste Management and Technology[C]. 2014:563-568.
    [24] WANG R, CHEN Y, XU Z. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments[J]. Environmental Science & Technology, 2015, 49:5999-6008.
    [25] CHEN Y, ZHANG L, XU Z. Vacuum pyrolysis characteristics and kinetic analysis of liquid crystal from scrap liquid crystal display panels[J]. Journal of Hazardous Materials, 2017, 327:55-63.
    [26] WANG R, XU Z. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels[J]. Journal of Hazardous Materials, 2016, 302:45-56.
    [27] GRAHAM T, FRYHLE C. Organic chemistry[M]. John Wiley & Sons Ltd, 2000.
    [28] JIN F, ENOMOTO H. Application of hydrothermal reaction to conversion of plant-origin biomasses into acetic and lactic acids[J]. Journal of Materials Science, 2008, 43:2463-2471.
    [29] JIN F, ENOMOTO H. Hydrothermal conversion of biomass into value-added products:Technology that mimics nature[J]. Bioresources, 2009, 4(2):704-713.
    [30] JIN F, ZHOU Z, KISHITA A, et al. Hydrothermal conversion of biomass into acetic acid[J]. Journal of Materials Science, 2006, 41:1495-1500.
    [31] JIN F, ZHOU Z, MORIYA T, et al. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass[J]. Environmental Science & Technology, 2005, 39:1893-1902.
    [32] JIN F, ENOMOTO H. Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions:Chemistry of acid/base-catalysed and oxidation reactions[J]. Energy Environ Sci, 2011, 4:382-397.
  • 加载中
计量
  • 文章访问数:  2105
  • HTML全文浏览数:  2105
  • PDF下载数:  72
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-09
王瑞雪, 王燕萍, 马恩, 张承龙. 热解及超临界水处理废弃液晶面板偏光片的反应机理[J]. 环境化学, 2020, (6): 1642-1649. doi: 10.7524/j.issn.0254-6108.2019040905
引用本文: 王瑞雪, 王燕萍, 马恩, 张承龙. 热解及超临界水处理废弃液晶面板偏光片的反应机理[J]. 环境化学, 2020, (6): 1642-1649. doi: 10.7524/j.issn.0254-6108.2019040905
WANG Ruixue, WANG Yanping, MA En, ZHANG Chenglong. Reaction mechanism of waste liquid crystal display panels under pyrolysis and supercritical water treatment conditions[J]. Environmental Chemistry, 2020, (6): 1642-1649. doi: 10.7524/j.issn.0254-6108.2019040905
Citation: WANG Ruixue, WANG Yanping, MA En, ZHANG Chenglong. Reaction mechanism of waste liquid crystal display panels under pyrolysis and supercritical water treatment conditions[J]. Environmental Chemistry, 2020, (6): 1642-1649. doi: 10.7524/j.issn.0254-6108.2019040905

热解及超临界水处理废弃液晶面板偏光片的反应机理

    通讯作者: 王瑞雪, E-mail: rxwang@sspu.edu.cn
  • 上海第二工业大学资源循环科学与工程中心/电子废弃物研究中心/上海电子废弃物资源化协同创新中心, 上海, 201209
基金项目:

国家自然科学基金(21806102),上海市青年科技英才扬帆计划(18YF1408800)和上海第二工业大学重点学科(XXKZD1602)资助.

摘要: 作为废弃液晶面板(LCD)的主要有机组分,偏光片的处置不仅可消除有机污染物对环境的危害,同时也是铟资源回收的必要前处理步骤.本文研究了不同处理条件(热解和超临界水)下偏光片的反应机制,分析并比较了两种反应条件下主要产物的生成机理.在热解条件下,偏光片主要组分三醋酸纤维素(TAC)中三醋酸葡萄糖单体上的酯羰基发生顺式消除反应生成主产物乙酸.在超临界水反应条件下,磷酸三苯酯(TPP)可发生水解反应生成磷酸和苯酚,使体系中氢离子浓度增加,可作为TAC水解的催化剂,TAC则经历四面体过渡态水解生成主产物乙酸.同时,本文对两种处理技术进行了分析和比较,结果表明热解处理具有设备简单、反应条件较温和、反应产物附加值高、易于分离等优点,应作为废弃偏光片的首选处理方法.本文为绿色、高效的回收废弃LCD提供理论基础和实践经验.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回