PbO2/Fe双阳极耦合促进焦化废水除碳脱氮
Enhanced removal of carbon and nitrogen from the coking wastewater via the coupled PbO2/Fe dual-anode electrochemical system
-
摘要: 传统单个PbO2阳极用于污染物去除存在降解效率较差、能耗高的问题,本文构建了PbO2/Fe双阳极体系,通过耦合电氧化技术和电絮凝技术实现对焦化废水同步除碳脱氮.研究发现,双阳极体系下6 h电解使得化学需氧量(COD)和总氮(TN)去除率分别达到50.3%±6.2%和34.9%±4.2%,高于单PbO2阳极体系(21.9%±3.4%和21.1%±5.3%)和单Fe阳极体系(11.0%±1.2%和12.1%±3.1%).COD和TN去除速度与施加在两个阳极上的电流大小直接相关.采用焦化废水中主要污染物如苯酚、硫氰酸盐、氨氮进行配水实验时发现,Fe阳极加入不仅起到了电絮凝作用,还可以促进氧化反应的发生,提高了反应速度.从体系中氯离子、pH变化情况及电子自旋共振光谱结果可推测,Fe阳极释放出来的Fe(Ⅱ)与PbO2阳极氧化氯离子产生的ClO-发生类Fenton反应,生成强氧化性物质作用于污染物氧化降解.
-
关键词:
- PbO2/Fe双阳极体系 /
- 电氧化 /
- 电絮凝 /
- 类Fenton反应 /
- 焦化废水处理
Abstract: Traditional electrochemical method using the single PbO2 anode for wastewater treatment suffers the problems including insufficient degradation of pollutants and high energy consumption. To address them, we herein reported a PbO2/Fe dual-anode system by integrating electrochemical oxidation and electrocoagulation for simultaneous carbon and nitrogen removal from coking wastewater. The 6-hour operation of the dual anode system enabled chemical oxygen demand (COD) and total nitrogen (TN) removal efficiencies of 50.3%±6.2% and 34.9%±4.2%, respectively, larger than 21.9%±3. 4% and 21.1%±5.3% obtained from the single PbO2 system, and 11.0%±1.2% and 12.1%±3. 1% obtained from the single Fe system. The degradation rates of COD and TN were found to be closely related to the currents applied to the anodes. Testing of the synthetic water containing phenol, thiocyanate, and ammonium revealed that the Fe anode not only contributed to pollutant coagulation but also accounted for pollutant oxidation, which accelerated the overall efficiencies. Based on the results of the variations in the concentrations of Cl- and pH values, and the difference in the electron spin resonance signals, it was proposed that Fe(Ⅱ) released from the Fe anode could react with ClO- generated from the PbO2 anode, and produce oxidative species in a Fenton-like reaction that degrades pollutants. -
-
[1] 孟祥帅, 吴萌萌, 陈鸿汉, 等. 某焦化场地非均质包气带中多环芳烃(PAHs)来源及垂向分布特征[J]. 环境科学, 2020, 41(1):377-384. MENG X S, WU M M, CHEN H H, et al. Vertical pollution characteristics and sources of polycyclic aromatic hydrocarbons in a heterogeneous unsaturated zone under a coking plant[J]. Environmental Science, 2020, 41(1):377-384(in Chinese).
[2] 张万辉, 韦朝海, 吴超飞, 等.焦化废水中有机物的识别、污染特性及其在废水处理过程中的降解[J].环境化学, 2012, 31(10):1480-1486. ZHANG W H, WEI C H, WU C F, et al. Identification, property and degradation of organic compounds in coking wastewater during treatment processes[J]. Environmental Chemistry, 2012, 31(10):1480-1486(in Chinese).
[3] ZHANG Y X, WEI C H, YAN B, et al. Emission characteristics and associated health risk assessment of volatile organic compounds from a typical coking wastewater treatment plant[J]. Science of Total Environment, 2019, 693:133417. [4] 林冲, 袁孟阳, 韦朝海, 等. 焦化废水缓冲体系的存在证明与集水调节池中水质结构调控[J]. 环境化学, 2012, 31(10):1473-1479. LIN C, YUAN M Y, WEI C H, et al. The buffer system in coking wastewater and the water quality control in water regulating tank[J]. Environmental Chemistry, 2012, 31(10):1473-1479(in Chinese).
[5] 黄源凯, 韦朝海, 吴超飞, 等. 焦化废水污染指标的相关性分析[J]. 环境化学, 2015, 34(9):1661-1670. HUANG Y K, WEI C H, WU C F, et al. The correlation analysis of pollution indexes in coking wastewater[J]. Environmental Chemistry, 2015,34(9):1661-1670(in Chinese).
[6] XU P, XU H, ZHANG D Y. The efficiency and mechanism in a novel electro-Fenton process assisted by anodic photocatalysis on advanced treatment of coal gasification wastewater[J]. Chemical Engineering Journal, 2019, 361:968-974. [7] OZYONAR F, KARAGOZOGLU B. Treatment of pretreated coke wastewater by electrocoagulation and electrochemical peroxidation processes[J]. Separation and Purification Technology, 2015, 150:268-277. [8] ZHANG C H, LIN H, CHEN J, et al. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor[J]. Environment Technology, 2013, 34(16):2371-2376. [9] 张立涛, 安路阳, 张亚峰, 等. 新型电絮凝设备深度处理焦化废水[J]. 环境科学与技术, 2017, 40(S2):121-125. ZHANG L T, AN L Y, ZHANG Y F, et al. Advanced treatment of coking wastewater by electrocoagulation equipment[J]. Environmental Science & Technology, 2017, 40(S2):121-125(in Chinese).
[10] 雷庆铎, 刘依林, 谷启源, 等. 电催化氧化预处理焦化废水的实验研究[J]. 工业水处理, 2014, 34(4):51-54. LEI Q D,LIU Y L,GU Q Y, et al. Experimental research on the pretreatment of coking wastewater by electro-catalytic oxidation[J]. Industrial Water Treatment, 2014, 34(4):51-54(in Chinese).
[11] AGUILAR Z G, BRILLAS E, SALAZAR M, et al. Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of Acid Yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion[J]. Applied Catalysis B-Environmental, 2017, 206:44-52. [12] KISHIMOTO N, NAKAMURA Y, KATO M, et al. Effect of oxidation-reduction potential on an electrochemical Fenton-type process[J]. Chemical Engineering Journal, 2015, 260:590-595. [13] CANDEIAS L P, STRATFORD M R L, WARDMAN P. Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron(II) complex[J]. Free Radical Research, 1994, 20(4):241-249. [14] LIANG S, ZHU L Y, HUA J, et al. Fe2+/HClO Reaction Produces FeIVO2+:An enhanced advanced oxidation process[J]. Environmental Science & Technology, 2020, 54(10):6406-6414. [15] 潘霞霞, 黄会静, 冯春华, 等. 焦化废水中硫氰化物的快速检测方法[J]. 煤化工, 2011, 39(1):15-18. PAN X X, HUANG H J, FENG C H, et al. Rapid determination of thiocyanate in coking wastewater[J]. Coal Chemical Industry, 2011, 39(1):15-18(in Chinese).
[16] SHIN Y U, YOO H Y, KIM S, et al. Sequential combination of electro-Fenton and electrochemical chlorination processes for the treatment of anaerobically-digested food wastewater[J]. Environmental Science & Technology, 2017, 51(18):10700-10710. [17] ZHANG Y, LI J H, BAI J, et al. Extremely efficient decomposition of ammonia N to N2 Using ClO·from reactions of HO·and HOCl generated in situ on a novel bifacial photoelectroanode[J]. Environmental Science & Technology, 2019, 53(12):6945-6953. [18] NIDHEESH P V, ZHOU M H, OTURAN M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197:210-227. [19] FAN N W, LI Z K, ZHAO L, et al. Electrochemical denitrification and kinetics study using Ti/IrO2-TiO2-RuO2 as the anode and Cu/Zn as the cathode[J]. Chemical Engineering Journal, 2013, 214:83-90. [20] LI M, FENG C P, ZHAO R, et al. Efficient removal of nitrate using electrochemical-ion exchange method and pretreatment of straw with by-products for biological fermentation[J]. Desalination, 2011, 278(1-3):275-280. [21] BARAZESH J M, PRASSE C, SEDLAK D L. Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions[J]. Environmental Science & Technology, 2016:50(18):10143-10152. [22] DE MOURA D C, COSTA DE A C K, CYNTHIA K, et al. Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface:Electrochemical behavior, concentration determination and their application[J]. Journal of Electroanalytical Chemistry, 2014, 731:145-152. [23] LI M, FENG C P, ZHANG Z Y, et al. Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method[J]. Journal of Hazardous Materials, 2009, 171(1-3):724-730. [24] YANG Y, SHIN J, JASPER J T, et al. Multilayer heterojunction anodes for saline wastewater treatment:Design strategies and reactive species generation mechanisms[J]. Environmental Science & Technology, 2016:50(16):8780-8787. [25] LIU L, FENG J M, GUO G W, et al. Dynamical complexity in electrochemical oxidations of thiocyanate[J]. Chinese Journal of Chemistry, 2009, 27(4):649-654. [26] 王一显, 马景德, 叶国杰, 等.基于脉冲电晕放电技术的硫氰化物分解与氮转化[J]. 环境科学学报, 2019, 39(9):2964-2971. WANG Y X, MA J D, YE G J, et al. Thiocyanide decomposition and nitrogen conversion based on pulsed coronadischarge technology[J]. Acta Scientiae Circumstantiae, 2019, 39(9):2964-2971(in Chinese).
[27] NIDHEESH P V, ZHOU M H, OTURAN M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197:210-227. [28] LUIS A C S, FRANCISCO B S, VIOLETA L L, et al. Peroxicoagulation and solar peroxicoagulation for landfill leachate treatment using a Cu-Fe System[J]. Water Air and Soil Pollution, 2018, 229(12):385. -

计量
- 文章访问数: 2347
- HTML全文浏览数: 2347
- PDF下载数: 105
- 施引文献: 0