PbO2/Fe双阳极耦合促进焦化废水除碳脱氮

李勇东, 吴迪, 郑文笑, 严樟, 冯春华, 韦朝海. PbO2/Fe双阳极耦合促进焦化废水除碳脱氮[J]. 环境化学, 2020, (6): 1650-1659. doi: 10.7524/j.issn.0254-6108.2019122801
引用本文: 李勇东, 吴迪, 郑文笑, 严樟, 冯春华, 韦朝海. PbO2/Fe双阳极耦合促进焦化废水除碳脱氮[J]. 环境化学, 2020, (6): 1650-1659. doi: 10.7524/j.issn.0254-6108.2019122801
LI Yongdong, WU Di, ZHENG Wenxiao, YAN Zhang, FENG Chunhua, WEI Chaohai. Enhanced removal of carbon and nitrogen from the coking wastewater via the coupled PbO2/Fe dual-anode electrochemical system[J]. Environmental Chemistry, 2020, (6): 1650-1659. doi: 10.7524/j.issn.0254-6108.2019122801
Citation: LI Yongdong, WU Di, ZHENG Wenxiao, YAN Zhang, FENG Chunhua, WEI Chaohai. Enhanced removal of carbon and nitrogen from the coking wastewater via the coupled PbO2/Fe dual-anode electrochemical system[J]. Environmental Chemistry, 2020, (6): 1650-1659. doi: 10.7524/j.issn.0254-6108.2019122801

PbO2/Fe双阳极耦合促进焦化废水除碳脱氮

    通讯作者: 冯春华, E-mail: chfeng@scut.edu.cn
  • 基金项目:

    国家自然科学基金(21876052)和广州市科技计划项目(201904010293)资助.

Enhanced removal of carbon and nitrogen from the coking wastewater via the coupled PbO2/Fe dual-anode electrochemical system

    Corresponding author: FENG Chunhua, chfeng@scut.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21876052) and the Science and Technology Program of Guangzhou(201904010293).
  • 摘要: 传统单个PbO2阳极用于污染物去除存在降解效率较差、能耗高的问题,本文构建了PbO2/Fe双阳极体系,通过耦合电氧化技术和电絮凝技术实现对焦化废水同步除碳脱氮.研究发现,双阳极体系下6 h电解使得化学需氧量(COD)和总氮(TN)去除率分别达到50.3%±6.2%和34.9%±4.2%,高于单PbO2阳极体系(21.9%±3.4%和21.1%±5.3%)和单Fe阳极体系(11.0%±1.2%和12.1%±3.1%).COD和TN去除速度与施加在两个阳极上的电流大小直接相关.采用焦化废水中主要污染物如苯酚、硫氰酸盐、氨氮进行配水实验时发现,Fe阳极加入不仅起到了电絮凝作用,还可以促进氧化反应的发生,提高了反应速度.从体系中氯离子、pH变化情况及电子自旋共振光谱结果可推测,Fe阳极释放出来的Fe(Ⅱ)与PbO2阳极氧化氯离子产生的ClO-发生类Fenton反应,生成强氧化性物质作用于污染物氧化降解.
  • 加载中
  • [1] 孟祥帅, 吴萌萌, 陈鸿汉, 等. 某焦化场地非均质包气带中多环芳烃(PAHs)来源及垂向分布特征[J]. 环境科学, 2020, 41(1):377-384.

    MENG X S, WU M M, CHEN H H, et al. Vertical pollution characteristics and sources of polycyclic aromatic hydrocarbons in a heterogeneous unsaturated zone under a coking plant[J]. Environmental Science, 2020, 41(1):377-384(in Chinese).

    [2] 张万辉, 韦朝海, 吴超飞, 等.焦化废水中有机物的识别、污染特性及其在废水处理过程中的降解[J].环境化学, 2012, 31(10):1480-1486.

    ZHANG W H, WEI C H, WU C F, et al. Identification, property and degradation of organic compounds in coking wastewater during treatment processes[J]. Environmental Chemistry, 2012, 31(10):1480-1486(in Chinese).

    [3] ZHANG Y X, WEI C H, YAN B, et al. Emission characteristics and associated health risk assessment of volatile organic compounds from a typical coking wastewater treatment plant[J]. Science of Total Environment, 2019, 693:133417.
    [4] 林冲, 袁孟阳, 韦朝海, 等. 焦化废水缓冲体系的存在证明与集水调节池中水质结构调控[J]. 环境化学, 2012, 31(10):1473-1479.

    LIN C, YUAN M Y, WEI C H, et al. The buffer system in coking wastewater and the water quality control in water regulating tank[J]. Environmental Chemistry, 2012, 31(10):1473-1479(in Chinese).

    [5] 黄源凯, 韦朝海, 吴超飞, 等. 焦化废水污染指标的相关性分析[J]. 环境化学, 2015, 34(9):1661-1670.

    HUANG Y K, WEI C H, WU C F, et al. The correlation analysis of pollution indexes in coking wastewater[J]. Environmental Chemistry, 2015,34(9):1661-1670(in Chinese).

    [6] XU P, XU H, ZHANG D Y. The efficiency and mechanism in a novel electro-Fenton process assisted by anodic photocatalysis on advanced treatment of coal gasification wastewater[J]. Chemical Engineering Journal, 2019, 361:968-974.
    [7] OZYONAR F, KARAGOZOGLU B. Treatment of pretreated coke wastewater by electrocoagulation and electrochemical peroxidation processes[J]. Separation and Purification Technology, 2015, 150:268-277.
    [8] ZHANG C H, LIN H, CHEN J, et al. Advanced treatment of biologically pretreated coking wastewater by a bipolar three-dimensional electrode reactor[J]. Environment Technology, 2013, 34(16):2371-2376.
    [9] 张立涛, 安路阳, 张亚峰, 等. 新型电絮凝设备深度处理焦化废水[J]. 环境科学与技术, 2017, 40(S2):121-125.

    ZHANG L T, AN L Y, ZHANG Y F, et al. Advanced treatment of coking wastewater by electrocoagulation equipment[J]. Environmental Science & Technology, 2017, 40(S2):121-125(in Chinese).

    [10] 雷庆铎, 刘依林, 谷启源, 等. 电催化氧化预处理焦化废水的实验研究[J]. 工业水处理, 2014, 34(4):51-54.

    LEI Q D,LIU Y L,GU Q Y, et al. Experimental research on the pretreatment of coking wastewater by electro-catalytic oxidation[J]. Industrial Water Treatment, 2014, 34(4):51-54(in Chinese).

    [11] AGUILAR Z G, BRILLAS E, SALAZAR M, et al. Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of Acid Yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion[J]. Applied Catalysis B-Environmental, 2017, 206:44-52.
    [12] KISHIMOTO N, NAKAMURA Y, KATO M, et al. Effect of oxidation-reduction potential on an electrochemical Fenton-type process[J]. Chemical Engineering Journal, 2015, 260:590-595.
    [13] CANDEIAS L P, STRATFORD M R L, WARDMAN P. Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron(II) complex[J]. Free Radical Research, 1994, 20(4):241-249.
    [14] LIANG S, ZHU L Y, HUA J, et al. Fe2+/HClO Reaction Produces FeIVO2+:An enhanced advanced oxidation process[J]. Environmental Science & Technology, 2020, 54(10):6406-6414.
    [15] 潘霞霞, 黄会静, 冯春华, 等. 焦化废水中硫氰化物的快速检测方法[J]. 煤化工, 2011, 39(1):15-18.

    PAN X X, HUANG H J, FENG C H, et al. Rapid determination of thiocyanate in coking wastewater[J]. Coal Chemical Industry, 2011, 39(1):15-18(in Chinese).

    [16] SHIN Y U, YOO H Y, KIM S, et al. Sequential combination of electro-Fenton and electrochemical chlorination processes for the treatment of anaerobically-digested food wastewater[J]. Environmental Science & Technology, 2017, 51(18):10700-10710.
    [17] ZHANG Y, LI J H, BAI J, et al. Extremely efficient decomposition of ammonia N to N2 Using ClO·from reactions of HO·and HOCl generated in situ on a novel bifacial photoelectroanode[J]. Environmental Science & Technology, 2019, 53(12):6945-6953.
    [18] NIDHEESH P V, ZHOU M H, OTURAN M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197:210-227.
    [19] FAN N W, LI Z K, ZHAO L, et al. Electrochemical denitrification and kinetics study using Ti/IrO2-TiO2-RuO2 as the anode and Cu/Zn as the cathode[J]. Chemical Engineering Journal, 2013, 214:83-90.
    [20] LI M, FENG C P, ZHAO R, et al. Efficient removal of nitrate using electrochemical-ion exchange method and pretreatment of straw with by-products for biological fermentation[J]. Desalination, 2011, 278(1-3):275-280.
    [21] BARAZESH J M, PRASSE C, SEDLAK D L. Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions[J]. Environmental Science & Technology, 2016:50(18):10143-10152.
    [22] DE MOURA D C, COSTA DE A C K, CYNTHIA K, et al. Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface:Electrochemical behavior, concentration determination and their application[J]. Journal of Electroanalytical Chemistry, 2014, 731:145-152.
    [23] LI M, FENG C P, ZHANG Z Y, et al. Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method[J]. Journal of Hazardous Materials, 2009, 171(1-3):724-730.
    [24] YANG Y, SHIN J, JASPER J T, et al. Multilayer heterojunction anodes for saline wastewater treatment:Design strategies and reactive species generation mechanisms[J]. Environmental Science & Technology, 2016:50(16):8780-8787.
    [25] LIU L, FENG J M, GUO G W, et al. Dynamical complexity in electrochemical oxidations of thiocyanate[J]. Chinese Journal of Chemistry, 2009, 27(4):649-654.
    [26] 王一显, 马景德, 叶国杰, 等.基于脉冲电晕放电技术的硫氰化物分解与氮转化[J]. 环境科学学报, 2019, 39(9):2964-2971.

    WANG Y X, MA J D, YE G J, et al. Thiocyanide decomposition and nitrogen conversion based on pulsed coronadischarge technology[J]. Acta Scientiae Circumstantiae, 2019, 39(9):2964-2971(in Chinese).

    [27] NIDHEESH P V, ZHOU M H, OTURAN M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197:210-227.
    [28] LUIS A C S, FRANCISCO B S, VIOLETA L L, et al. Peroxicoagulation and solar peroxicoagulation for landfill leachate treatment using a Cu-Fe System[J]. Water Air and Soil Pollution, 2018, 229(12):385.
  • 加载中
计量
  • 文章访问数:  2347
  • HTML全文浏览数:  2347
  • PDF下载数:  105
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-12-28
李勇东, 吴迪, 郑文笑, 严樟, 冯春华, 韦朝海. PbO2/Fe双阳极耦合促进焦化废水除碳脱氮[J]. 环境化学, 2020, (6): 1650-1659. doi: 10.7524/j.issn.0254-6108.2019122801
引用本文: 李勇东, 吴迪, 郑文笑, 严樟, 冯春华, 韦朝海. PbO2/Fe双阳极耦合促进焦化废水除碳脱氮[J]. 环境化学, 2020, (6): 1650-1659. doi: 10.7524/j.issn.0254-6108.2019122801
LI Yongdong, WU Di, ZHENG Wenxiao, YAN Zhang, FENG Chunhua, WEI Chaohai. Enhanced removal of carbon and nitrogen from the coking wastewater via the coupled PbO2/Fe dual-anode electrochemical system[J]. Environmental Chemistry, 2020, (6): 1650-1659. doi: 10.7524/j.issn.0254-6108.2019122801
Citation: LI Yongdong, WU Di, ZHENG Wenxiao, YAN Zhang, FENG Chunhua, WEI Chaohai. Enhanced removal of carbon and nitrogen from the coking wastewater via the coupled PbO2/Fe dual-anode electrochemical system[J]. Environmental Chemistry, 2020, (6): 1650-1659. doi: 10.7524/j.issn.0254-6108.2019122801

PbO2/Fe双阳极耦合促进焦化废水除碳脱氮

    通讯作者: 冯春华, E-mail: chfeng@scut.edu.cn
  • 1. 华南理工大学环境与能源学院, 广州, 510006;
  • 2. 工业聚集区污染控制与生态修复教育部重点实验室, 广州, 510006
基金项目:

国家自然科学基金(21876052)和广州市科技计划项目(201904010293)资助.

摘要: 传统单个PbO2阳极用于污染物去除存在降解效率较差、能耗高的问题,本文构建了PbO2/Fe双阳极体系,通过耦合电氧化技术和电絮凝技术实现对焦化废水同步除碳脱氮.研究发现,双阳极体系下6 h电解使得化学需氧量(COD)和总氮(TN)去除率分别达到50.3%±6.2%和34.9%±4.2%,高于单PbO2阳极体系(21.9%±3.4%和21.1%±5.3%)和单Fe阳极体系(11.0%±1.2%和12.1%±3.1%).COD和TN去除速度与施加在两个阳极上的电流大小直接相关.采用焦化废水中主要污染物如苯酚、硫氰酸盐、氨氮进行配水实验时发现,Fe阳极加入不仅起到了电絮凝作用,还可以促进氧化反应的发生,提高了反应速度.从体系中氯离子、pH变化情况及电子自旋共振光谱结果可推测,Fe阳极释放出来的Fe(Ⅱ)与PbO2阳极氧化氯离子产生的ClO-发生类Fenton反应,生成强氧化性物质作用于污染物氧化降解.

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回