基于丝网印刷电极的电化学传感器在农药残留检测中的应用综述

梁刚, 张全刚, 赵杰, 靳欣欣, 潘立刚. 基于丝网印刷电极的电化学传感器在农药残留检测中的应用综述[J]. 环境化学, 2020, (7): 1913-1922. doi: 10.7524/j.issn.0254-6108.2019042304
引用本文: 梁刚, 张全刚, 赵杰, 靳欣欣, 潘立刚. 基于丝网印刷电极的电化学传感器在农药残留检测中的应用综述[J]. 环境化学, 2020, (7): 1913-1922. doi: 10.7524/j.issn.0254-6108.2019042304
LIANG Gang, ZHANG Quangang, ZHAO Jie, JIN Xinxin, PAN Ligang. Recent advances of screen-printed electrode based electrochemical sensor for the detection of Pesticides[J]. Environmental Chemistry, 2020, (7): 1913-1922. doi: 10.7524/j.issn.0254-6108.2019042304
Citation: LIANG Gang, ZHANG Quangang, ZHAO Jie, JIN Xinxin, PAN Ligang. Recent advances of screen-printed electrode based electrochemical sensor for the detection of Pesticides[J]. Environmental Chemistry, 2020, (7): 1913-1922. doi: 10.7524/j.issn.0254-6108.2019042304

基于丝网印刷电极的电化学传感器在农药残留检测中的应用综述

    通讯作者: 潘立刚, E-mail: panlg@brcast.org.cn
  • 基金项目:

    北京市优秀人才项目(2017000020060G127),北京市农林科学院科技创新能力建设专项(KJCX20170420),国家自然科学基金青年基金(21806013),北京市自然科学基金(L182031)和国家重点研发计划(2019YFC1605603)资助.

Recent advances of screen-printed electrode based electrochemical sensor for the detection of Pesticides

    Corresponding author: PAN Ligang, panlg@brcast.org.cn
  • Fund Project: Supported by the Project of Beijing Excellent Talents (2017000020060G127), Special Projects of Construction of Science and Technology Innovation Ability of Beijing Academy of Agriculture and Forestry Sciences (KJCX20170420), National Natural Science Foundation of China (21806013), Beijing Natural Science Foundation (L182031) and National Key Research and Development Project (2019YFC1605603).
  • 摘要: 环境中农药残留具有较强的毒性,其长期残存会对环境生态系统和人类个体产生毒性效应,因而引起科研工作者的关注.目前,传统的色谱分析方法(如气相色谱法、液相色谱-质谱联用法等)是农药残留检测的主要手段,但是存在费时、样本处理复杂、仪器设备昂贵等局限性,因此,迫切需求建立简单、快速、灵敏的农残检测方法.生物传感技术具有诸多优势,特别是其可以简化样本处理/制备过程,实现场地检测,降低检测成本,有望将来取代传统的分析方法.本文主要综述了丝网印刷电极电化学传感器在农残检测中的研究进展.首先,简单介绍了丝网印刷电极及其制备,然后重点介绍了丝网印刷电极电化学传感器在有机磷类、氨基甲酸酯类、除草剂类等三类农药中的应用进展,并分别阐述了以酶、核酸、蛋白、抗体等为分子识别元件的生物传感检测原理,最后对丝网印刷电极的发展进行了展望.
  • 加载中
  • [1] FERNáNDEZ M, PICó Y, GIROTTI S, et al. Analysis of organophosphorus pesticides in honeybee by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry[J]. J Agr Food Chem, 2001, 49(8):3540-3547.
    [2] LIU Y, WANG G, LI C, et al. A novel acetylcholinesterase biosensor based on carboxylic graphene coated with silver nanoparticles for pesticide detection[J]. Mater Sci Eng C, 2014, 35:253-258.
    [3] LIU B, ZHOU P, LIU X, et al. Detection of pesticides in fruits by surface-enhanced raman spectroscopy coupled with gold nanostructures[J]. Food Bioprocess Technol, 2013, 6(3):710-718.
    [4] QIAN S, LIN H. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides[J]. Anal Chem, 2015, 87(10):5395-5400.
    [5] ZHANG K, YU T, LIU F, et al. Selective fluorescence turn-on and ratiometric detection of organophosphate using dual-emitting Mn-doped ZnS nanocrystal probe[J]. Anal Chem, 2014, 86(23):11727-11733.
    [6] LIU S, YUAN L, YUE X, et al. Recent advances in nanosensors for organophosphate pesticide detection[J]. Adv Powder Technol, 2008, 19(5):419-441.
    [7] 梁刚, 满燕, 贾文珅, 等. 电化学生物传感器在有机磷农药分析中的应用[J]. 食品安全质量检测学报, 2016, 7(7):433-438.

    LIANG G, MAN Y, JIA W S, et al. Application of electrochemical biosensors for the detection of organophosphorus pesticide[J]. J Food Saf Qual, 2016, 7(7):433-438(in Chinese).

    [8] 贾文珅, 梁刚, 吴楠京, 等. 全自动凝胶净化色谱对大米农药残留提取液的快速净化及其性能评价[J]. 分析实验室, 2018, 37(3):265-269.

    JIA W S, LIANG G WU N J et al. Purification method and performance evaluation of an automated gel permeation chromatography for rice pesticide residues extracts[J]. Chinese J Anal Lab, 2018, 37(3):265-269(in Chinese).

    [9] LIANG G, LIU X H, LI X H. Highly sensitive detection of α-naphthol based on G-DNA modified gold electrode by electrochemical impedance spectroscopy[J]. Biosens Bioelectron, 2013, 45(15):46-51.
    [10] LIANG G, LI T, LI X H, et al. Electrochemical detection of the amino-substituted naphthalene compounds based on intercalative interaction with hairpin DNA by electrochemical impedance spectroscopy[J]. Biosens Bioelectron, 2013, 48(15):238-243.
    [11] GONZáLEZ-SáNCHEZ M I, GóMEZ-MONEDERO B, AGRISUELAS J, et al. Highly activated screen-printed carbon electrodes by electrochemical treatment with hydrogen peroxide[J]. Electrochem Commun, 2018, 91:36-40.
    [12] LEE J, ARRIGAN D W M, SILVESTER D S. Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes[J]. Sensing and Bio-Sensing Research, 2016, 9:38-44.
    [13] KHORSHED A A, KHAIRY M, BANKS C E. Voltammetric determination of meclizine antihistamine drug utilizing graphite screen-printed electrodes in physiological medium[J]. J Electroanal Chem, 2018, 824:39-44.
    [14] RODRíGUEZ J, CASTAñEDA G, LIZCANO I. Electrochemical sensor for leukemia drug imatinib determination in urine by adsorptive striping square wave voltammetry using modified screen-printed electrodes[J]. Electrochim Acta, 2018, 269:668-675.
    [15] POO-ARPORN Y, PAKAPONGPAN S, CHANLEK N, et al. The development of disposable electrochemical sensor based on Fe3O4-doped reduced graphene oxide modified magnetic screen-printed electrode for ractopamine determination in pork sample[J]. Sens Actuators B Chem, 2019, 284:164-171.
    [16] YUGENDER GOUD K, SUNIL KUMAR V, HAYAT A, et al. A highly sensitive electrochemical immunosensor for zearalenone using screen-printed disposable electrodes[J]. J Electroanal Chem, 2019, 832:336-342.
    [17] IBáñEZ-REDíN G, FURUTA R H M, WILSON D, et al. Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9[J]. Mater Sci Eng C, 2019, 99:1502-1508.
    [18] KURNIAWAN A, KURNIAWAN F, GUNAWAN F, et al. Disposable electrochemical sensor based on copper-electrodeposited screen-printed gold electrode and its application in sensing l-Cysteine[J]. Electrochim Acta, 2019, 293:318-327.
    [19] JI D, LIU Z, LIU L, et al. Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes[J]. Biosens Bioelectron, 2018, 119:55-62.
    [20] LIANG G, LIU X H. G-quadruplex based impedimetric 2-hydroxyfluorene biosensor using hemin as a peroxidase enzyme mimic[J]. Microchim Acta, 2015, 182(13):2233-2240.
    [21] JEROMIYAS N, ELAIYAPPILLAI E, KUMAR A S, et al. Bismuth nanoparticles decorated graphenated carbon nanotubes modified screen-printed electrode for mercury detection[J]. J Taiwan Inst Chem Eng, 2019, 95:466-474.
    [22] EKOMO V M, BRANGER C, BIKANGA R, et al. Detection of bisphenol A in aqueous medium by screen printed carbon electrodes incorporating electrochemical molecularly imprinted polymers[J]. Biosens Bioelectron, 2018, 112:156-161.
    [23] LIANG G, LI X H, LIU X H. Electrochemical detection of 9-hydroxyfluorene based on the direct interaction with hairpin DNA[J]. Analyst, 2013, 138(4):1032-1037.
    [24] RENEDO O D, ALONSO-LOMILLO M, MARTINEZ M. Recent developments in the field of screen-printed electrodes and their related applications[J]. Talanta, 2007, 73(2):202-219.
    [25] AGRISUELAS J, GONZáLEZ-SáNCHEZ M I, VALERO E. Hydrogen peroxide sensor based on in situ grown Pt nanoparticles from waste screen-printed electrodes[J]. Sens Actuators B Chem, 2017, 249:499-505.
    [26] JADAV J K, UMRANIA V V, RATHOD K J, et al. Development of silver/carbon screen-printed electrode for rapid determination of vitamin C from fruit juices[J]. LWT Food Sci Technol, 2018, 88:152-158.
    [27] CHAIYO S, MEHMETI E, SIANGPROH W, et al. Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine-ionic liquid-graphene composite[J]. Biosens Bioelectron, 2018, 102:113-120.
    [28] SONGA E A, OKONKWO J O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides:A review[J]. Talanta, 2016, 155:289-304.
    [29] LANG Q, HAN L, HOU C, et al. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide[J]. Talanta, 2016, 156/157:34-41.
    [30] DU D, WANG M, CAI J, et al. One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor[J]. Sens Actuators B Chem, 2010, 143(2):524-529.
    [31] YU G, WU W, ZHAO Q, et al. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors[J]. Biosens Bioelectron, 2015, 68:288-294.
    [32] TIAN X, LIU L, LI Y, et al. Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water[J]. Sens Actuators B Chem, 2018, 256:135-142.
    [33] YANG L, WANG G, LIU Y, et al. Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides[J]. Talanta, 2013, 113:135-141.
    [34] ZHOU Q, YANG L, WANG G, et al. Acetylcholinesterase biosensor based on SnO2 nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides[J]. Biosens Bioelectron, 2013, 49:25-31.
    [35] YANG L, WANG G, LIU Y. An acetylcholinesterase biosensor based on platinum nanoparticles-carboxylic graphene-nafion-modified electrode for detection of pesticides[J]. Anal Biochem, 2013, 437(2):144-149.
    [36] SONG D, LI Y, LU X, et al. Palladium-copper nanowires-based biosensor for the ultrasensitive detection of organophosphate pesticides[J]. Anal Chim Acta, 2017, 982:168-175.
    [37] WANG G, TAN X, ZHOU Q, et al. Synthesis of highly dispersed zinc oxide nanoparticles on carboxylic graphene for development a sensitive acetylcholinesterase biosensor[J]. Sens Actuators B Chem, 2014, 190:730-736.
    [38] ZHANG P, SUN T, RONG S, et al. A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite[J]. Bioelectrochemistry, 2019, 127:163-170.
    [39] ISTAMBOULIE G, SIKORA T, JUBETE E, et al. Screen-printed poly(3,4-ethylenedioxythiophene) (PEDOT):A new electrochemical mediator for acetylcholinesterase-based biosensors[J]. Talanta, 2010, 82(3):957-961.
    [40] CINTI S, NEAGU D, CARBONE M, et al. Novel carbon black-cobalt phthalocyanine nanocomposite as sensing platform to detect organophosphorus pollutants at screen-printed electrode[J]. Electrochim Acta, 2016, 188:574-581.
    [41] GAN N, YANG X, XIE D, et al. A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode[J]. Sensors, 2010, 10(1):625-638.
    [42] FU J, ZHANG Q, SHI Z, et al. Sensitive acetylcholinesterase biosensor based on screen printed carbon electrode modified with cerium oxide chitosan/mesoporous carbon-chitosan for organophosphorus pesticide residue detection[J]. Int J Electrochem Sci, 2018, 13:9231-9241.
    [43] ANDREESCU S, NOGUER T, MAGEARU V, et al. Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents[J]. Talanta, 2002, 57(1):169-176.
    [44] KHAIRY M, AYOUB H A, BANKS C E. Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes[J]. Food Chem, 2018, 255:104-111.
    [45] PELLICER C, GOMEZ-CABALLERO A, UNCETA N, et al. Using a portable device based on a screen-printed sensor modified with a molecularly imprinted polymer for the determination of the insecticide fenitrothion in forest samples[J]. Anal Methods, 2010, 2(9):1280-1285.
    [46] LI H, LI J, YANG Z, et al. A novel photoelectrochemical sensor for the organophosphorus pesticide dichlofenthion based on nanometer-sized titania coupled with a screen-printed electrode[J]. Anal Chem, 2011, 83(13):5290-5295.
    [47] LI F, YU Z, HAN X, et al. Electrochemical aptamer-based sensors for food and water analysis:A review[J]. Anal Chim Acta, 2019, 1051:1-23.
    [48] HASSANI S, AKMAL M R, SALEK-MAGHSOUDI A, et al. Novel label-free electrochemical aptasensor for determination of Diazinon using gold nanoparticles-modified screen-printed gold electrode[J]. Biosens Bioelectron, 2018, 120:122-128.
    [49] BUCUR B, FOURNIER D, DANET A, et al. Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection[J]. Anal Chimi Acta, 2006, 562(1):115-121.
    [50] WANG M, HUANG J, WANG M, et al. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables[J]. Food Chem, 2014, 151:191-197.
    [51] CESARINO I, MORAES F C, LANZA M R V, et al. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes[J]. Food Chem, 2012, 135(3):873-879.
    [52] 干宁, 王峰, 杨欣, 等. 采用纳米修饰双酶电极生物传感器检测有机膦与氨基甲酸酯类农药[J]. 农药学学报, 2008, 10(3):329-334.

    GAN N, WANG F, YANG X, et al. A nano particle modified bienzyme electrode biosensor for the detection of carbamate and organophosphorus pesticides[J]. Chinese J Pestic Sci, 2008, 10(3):329-334(in Chinese).

    [53] CAI J, DU D. A disposable sensor based on immobilization of acetylcholinesterase to multiwall carbon nanotube modified screen-printed electrode for determination of carbaryl[J]. J Appl Electrochem, 2008, 38(9):1217-1222.
    [54] CHAI Y, NIU X, CHEN C, et al. Carbamate insecticide sensing based on acetylcholinesterase/prussian blue-multi-walled carbon nanotubes/screen-printed electrodes[J]. Anal Lett, 2013, 46(5):803-817.
    [55] DELLA PELLE F, ANGELINI C, SERGI M, et al. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection:Application to grain samples[J]. Talanta, 2018, 186:389-396.
    [56] TANIMOTO DE ALBUQUERQUE Y D, FERREIRA L F. Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes[J]. Anal Chim Acta, 2007, 596(2):210-221.
    [57] PICHETSURNTHORN P, VATTIPALLI K, PRASAD S. Nanoporous impedemetric biosensor for detection of trace atrazine from water samples[J]. Biosens Bioelectron, 2012, 32(1):155-162.
    [58] SONGA E A, AROTIBA O A, OWINO J H O, et al. Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix[J]. Bioelectrochemistry, 2009, 75(2):117-123.
    [59] YOUNG S J, HART J P, DOWMAN A A, et al. The non-specific inhibition of enzymes by environmental pollutants:A study of a model system towards the development of electrochemical biosensor arrays[J]. Biosens Bioelectron, 2001, 16(9-12):887-894.
    [60] ARDUINI F, CINTI S, CARATELLI V, et al. Origami multiple paper-based electrochemical biosensors for pesticide detection[J]. Biosens Bioelectron, 2019, 126:346-354.
    [61] ZEN J M, CHEN H P, SENTHIL KUMAR A. Disposable clay-coated screen-printed electrode for amitrole analysis[J]. Anal Chim Acta, 2001, 449(1):95-102.
    [62] SILVA R D O, DA SILVA É A, FIORUCCI A R, et al. Electrochemically activated multi-walled carbon nanotubes modified screen-printed electrode for voltammetric determination of sulfentrazone[J]. J Electroanal Chem, 2019, 835:220-226.
    [63] HADDAOUI M, RAOUAFI N. Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/SPCE biosensor for the detection of ppb levels of herbicide[J]. Sens Actuators B Chem, 2015, 219:171-178.
    [64] CHATZIPETROU M, MILANO F, GIOTTA L, et al. Functionalization of gold screen printed electrodes with bacterial photosynthetic reaction centers by laser printing technology for mediatorless herbicide biosensing[J]. Electrochem Commun, 2016, 64:46-50.
    [65] ZAMALEEVA A I, SHARIPOVA I R, SHAMAGSUMOVA R V, et al. A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes[J]. Anal Methods, 2011, 3(3):509-513.
    [66] KRöGER S, TURNER A P F. Solvent-resistant carbon electrodes screen printed onto plastic for use in biosensors[J]. Anal Chim Acta 1997, 347(1-2):9-18.
    [67] KRöGER S, TURNER A P F, Mosbach K, et al. Imprinted polymer based sensor system for herbicides using differential-pulse voltammetry on screen-printed electrodes[J]. Anal Chem, 1999, 71(17):3698-3702.
    [68] GERDES M, SPENER F, MEUSEL M. Psuedo homogeneous amperometric immunosensor for the detection of 2,4-D based on a displacement format[J]. Quim Anal, 2000, 19(1):8-14.
    [69] ZHANG Y, ARUGULA M A, WALES M, et al. A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides[J]. Biosens Bioelectron, 2015, 67:287-295.
    [70] ALONSO G A, ISTAMBOULIE G, RAMíREZ-GARCíA A, et al. Artificial neural network implementation in single low-cost chip for the detection of insecticides by modeling of screen-printed enzymatic sensors response[J]. Comput Electron Agric, 2010, 74(2):223-229.
    [71] BACHMANN T T, LECA B, VILATTE F, et al. Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of drosophila acetylcholinesterase and artificial neural networks[J]. Biosens Bioelectron, 2000, 15(3-4):193-201.
  • 加载中
计量
  • 文章访问数:  2860
  • HTML全文浏览数:  2860
  • PDF下载数:  101
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-23

基于丝网印刷电极的电化学传感器在农药残留检测中的应用综述

    通讯作者: 潘立刚, E-mail: panlg@brcast.org.cn
  • 1. 北京市农林科学院, 北京农业质量标准与检测技术研究中心, 北京, 100097;
  • 2. 农业部农产品质量安全风险评估实验室(北京), 北京, 100097;
  • 3. 农产品产地环境监测北京市重点实验室, 北京, 100097;
  • 4. 北京市首发天人生态景观有限公司, 北京, 102600
基金项目:

北京市优秀人才项目(2017000020060G127),北京市农林科学院科技创新能力建设专项(KJCX20170420),国家自然科学基金青年基金(21806013),北京市自然科学基金(L182031)和国家重点研发计划(2019YFC1605603)资助.

摘要: 环境中农药残留具有较强的毒性,其长期残存会对环境生态系统和人类个体产生毒性效应,因而引起科研工作者的关注.目前,传统的色谱分析方法(如气相色谱法、液相色谱-质谱联用法等)是农药残留检测的主要手段,但是存在费时、样本处理复杂、仪器设备昂贵等局限性,因此,迫切需求建立简单、快速、灵敏的农残检测方法.生物传感技术具有诸多优势,特别是其可以简化样本处理/制备过程,实现场地检测,降低检测成本,有望将来取代传统的分析方法.本文主要综述了丝网印刷电极电化学传感器在农残检测中的研究进展.首先,简单介绍了丝网印刷电极及其制备,然后重点介绍了丝网印刷电极电化学传感器在有机磷类、氨基甲酸酯类、除草剂类等三类农药中的应用进展,并分别阐述了以酶、核酸、蛋白、抗体等为分子识别元件的生物传感检测原理,最后对丝网印刷电极的发展进行了展望.

English Abstract

参考文献 (71)

目录

/

返回文章
返回