高效液相色谱-三重四极杆串联质谱测定环境水样中20种环境内分泌干扰物

罗洲飞, 徐梦薇, 陆静, 李炳贤, 李海普, 杨远. 高效液相色谱-三重四极杆串联质谱测定环境水样中20种环境内分泌干扰物[J]. 环境化学, 2020, (7): 1923-1933. doi: 10.7524/j.issn.0254-6108.2019050706
引用本文: 罗洲飞, 徐梦薇, 陆静, 李炳贤, 李海普, 杨远. 高效液相色谱-三重四极杆串联质谱测定环境水样中20种环境内分泌干扰物[J]. 环境化学, 2020, (7): 1923-1933. doi: 10.7524/j.issn.0254-6108.2019050706
LUO Zhoufei, XU Mengwei, LU Jing, LI Bingxian, LI Haipu, YANG Yuan. Determination of 20 endocrine-disrupting compounds in environmental water samples by high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2020, (7): 1923-1933. doi: 10.7524/j.issn.0254-6108.2019050706
Citation: LUO Zhoufei, XU Mengwei, LU Jing, LI Bingxian, LI Haipu, YANG Yuan. Determination of 20 endocrine-disrupting compounds in environmental water samples by high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2020, (7): 1923-1933. doi: 10.7524/j.issn.0254-6108.2019050706

高效液相色谱-三重四极杆串联质谱测定环境水样中20种环境内分泌干扰物

    通讯作者: 杨远, E-mail: yangyuan041@163.com
  • 基金项目:

    2018年湖南农业大学校青年基金(620290118014-18QN14)资助.

Determination of 20 endocrine-disrupting compounds in environmental water samples by high performance liquid chromatography-tandem mass spectrometry

    Corresponding author: YANG Yuan, yangyuan041@163.com
  • Fund Project: Supported by the 2018 Hunan Agriculture University School Fund for Youth Interest (620290118014-18QN14).
  • 摘要: 环境内分泌干扰物(EDCs)是指干扰生物体内保持自身平衡和调节发育过程中天然激素的外源性化学物质.因EDCs对环境暴露生物体正常生长发育和繁殖带来的潜在危害,其已成为当前科学界和公众共同关注的热点问题之一.本论文建立了固相萃取-高效液相色谱-串联质谱测定水样中4类EDCs(孕激素、雄激素、雌激素和烷基酚)的分析方法.水样通过HLB小柱进行固相萃取和纯化,以甲醇和水为正模式流动相,孕激素和雄激素等物质在正模式下响应高;甲醇和0.1%氨水为负模式流动相,雌激素和烷基酚等物质在负模式下响应高.20种EDCs的定量分析通过三重四极杆串联质谱多反应监测模式分析.各目标物的检出限为0.04-0.51 ng·L-1,定量限为0.13-1.70 ng·L-1,回收率为76.1%-121.6%,相对标准偏差<15%.应用该方法对不同水体(河流水、湖泊水和生活污水)中EDCs的分布状况进行了初步调查,发现EDCs广泛存在于表层水样中,浓度范围为ND-981.1 ng·L-1.
  • 加载中
  • [1] KAVLOCK R J. Overview of endocrine disruptor research activity in the United States[J]. Chemosphere, 1999, 39(8):1227-1236.
    [2] WEE S Y, ARIS A Z. Endocrine disrupting compounds in drinking water supply system and human health risk implication[J]. Environment International, 2017, 106:207-233.
    [3] MILLS L J, CHICHESTER C. Review of evidence are endocrine-disrupting chemicals in the aquatic environment impacting fish populations?[J]. Science of the Total Environment, 2005, 343(1-3):1-34.
    [4] HUANG B, XIONG D, HE H, et al. Characteristics and bioaccumulation of progestogens, androgens, estrogens, and phenols in Erhai Lake catchment, Yunnan, China[J]. Environmental Engineering Science, 2017, 34(5):321-332.
    [5] CHANG H, WAN Y, HU J. Determination and source apportionment of five classes of steroid hormones in urban rivers[J]. Environmental Science & Technology, 2009, 43(20):7691-7698.
    [6] HORSTMAN A M, DILLON E L, URBAN R J, et al. The role of androgens and estrogens on healthy aging and longevity[J]. The Journals of Gerontology:Series A, 2012, 67(11):1140-1152.
    [7] WU H L, LI G L, LIU S C, et al. Monitoring the contents of six steroidal and phenolic endocrine disrupting chemicals in chicken, fish and aquaculture pond water samples using pre-column derivatization and dispersive liquid-liquid microextraction with the aid of experimental design methodology[J]. Food Chemistry, 2016, 192:98-106.
    [8] ZHANG S, ZHANG Q, DARISAW S, et al. Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA[J]. Chemosphere, 2007, 66(6):1057-1069.
    [9] BATT A L, KINCAID T M, KOSTICH M S, et al. Evaluating the extent of pharmaceuticals in surface waters of the United States using a national-scale rivers and streams assessment survey[J]. Environmental Toxicology and Chemistry, 2016, 35(4):874-881.
    [10] HUANG B, LI X M, SUN W W, et al. Occurrence, removal, and fate of progestogens, androgens, estrogens, and phenols in six sewage treatment plants around Dianchi Lake in China[J]. Environmental Science and Pollution Research, 2014, 21(22):12898-12908.
    [11] ESTEBAN S, GORGA M, PETROVIC M, et al. Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain[J]. Science of the Total Environment, 2014(466/467):939-951.
    [12] CHANG H, WAN Y, WU S, et al. Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters:Comparison to estrogens[J]. Water Research, 2011, 45(2):732-740.
    [13] NIESSEN W, MANINI P, ANDREOLI R. Matrix effects in quantitative pesticide analysis using liquid chromatography-mass spectrometry[J]. Mass Spectrometry Reviews, 2006, 25(6):881-899.
    [14] TRENHOLM R A, VANDERFORD B J, HOLADY J C, et al. Broad range analysis of endocrine disruptors and pharmaceuticals using gas chromatography and liquid chromatography tandem mass spectrometry[J]. Chemosphere, 2006, 65(11):1990-1998.
    [15] ASHFAQ M, LI Y, WANG Y, et al. Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China[J]. Water Research, 2017, 123:655-667.
    [16] HENNION M C. Solid-phase extraction:Method development, sorbents, and coupling with liquid chromatography[J]. Journal of Chromatography A, 1999, 856(1):43-54.
    [17] LEE J, PARK Y, YANG W, et al. Cross-examination of liquid-liquid extraction (LLE) and solid-phase microextraction (SPME) methods for impurity profiling of methamphetamine[J]. Forensic Science International, 2012, 215(1):175-178.
    [18] 张奎文, 叶赛, 那广水, 等. 高效液相色谱-串联质谱法测定环境水体中双酚A、辛基酚、壬基酚[J].分析试验室,2008, 27(8):62-66.

    ZHANG K W,YE S, NA G S, et al. Determination of bisphenol A, nonylphenol, octylpheonl in water by liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2008, 27(8):62-66(in Chinese).

    [19] 罗柏华. 超高压液相色谱-串联质谱法测定养殖水中沙丁胺醇、双酚A、甲基睾酮、甲地孕酮、已烯雌酚的残留[J]. 热带农业工程, 2010, 34(2):6-9.

    LUO B H. Determination of albuterol, bisphenol A, metandren in seawater for aquaculture by ultra-performance liquid chromatography-electrospray tandem mass spectrometry[J]. Tropical Agicultural Gricultural Engineering, 2010, 34(2):6-9(in Chinese).

    [20] YANG M, MA Y, GUI W, et al. Determination of 26 endocrine disrupting chemicals in fish and water using modified QuEChERS combined with solid-phase extraction and UHPLC-MS/MS[J]. Analytical Methods, 2015, 7(19):8418-8431.
    [21] STRECK G. Chemical and biological analysis of estrogenic, progestagenic and androgenic steroids in the environment[J]. TrAC Trends in Analytical Chemistry, 2009, 28(6):635-652.
    [22] LIU S, CHEN H, ZHOU G J, et al. Occurrence, source analysis and risk assessment of androgens, glucocorticoids and progestagens in the Hailing Bay region, South China Sea[J]. Science of the Total Environment, 2015, 536:99-107.
    [23] LUO Z, LI H, YANG Y, et al. Adsorption of 17α-ethinylestradiol from aqueous solution onto a reduced graphene oxide-magnetic composite[J]. Journal of the Taiwan Institute of Chemical, 2017, 80:797-804.
    [24] LGYESI A, VEREBEY Z, SHARMA V K, et al. Simultaneous determination of corticosteroids, androgens, and progesterone in river water by liquid chromatography-tandem mass spectrometry[J]. Chemosphere, 2010, 78(8):972-979.
    [25] YOON Y, RYU J, OH J, et al. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea)[J]. Science of the Total Environment, 2010, 408(3):636-643.
    [26] LIU R, ZHOU J, WILDING A. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2004, 1022(1-2):179-189.
    [27] DEALDAMAJ L, DÍAZ-CRUZ S, PETROVIC M, et al. Liquid chromatography-(tandem) mass spectrometry of selected emerging pollutants (steroid sex hormones, drugs and alkylphenolic surfactants) in the aquatic environment[J]. Journal of Chromatography A, 2003, 1000(1-2):503-526.
    [28] DOBREV P I, KAMNEK M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction[J]. Journal of Chromatography A, 2002, 950(1-2):21-29.
    [29] LI Z, XIANG X, LI M, et al. Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China[J]. Ecotoxicology and Environmental Safety, 2015, 119:74-80.
    [30] ZHANG K, FENT K. Determination of two progestin metabolites (17α-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)[J]. Science of the Total Environment, 2018, 610:1164-1172.
    [31] HUANG B, SUN W W, LI X M, et al. Simultaneous determination of progestogens, androgens, estrogens and phenols in water, sediment and biological samples by enolisation-silylation with ASE-GPC-SPE-GC/MS[J]. Analytical Methods, 2015, 7(15):6139-6151.
    [32] ZHANG S, YOU J, SUN Z, et al. A sensitive method for extraction and determination of endocrine-disrupting compounds from wastewater using 10-ethyl-acridone-2-sulfonyl chloride as pre-column labeling reagent by high-performance liquid chromatography with fluorescence detection[J]. Microchemical Journal, 2012, 103:90-96.
  • 加载中
计量
  • 文章访问数:  2046
  • HTML全文浏览数:  2046
  • PDF下载数:  76
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-07

高效液相色谱-三重四极杆串联质谱测定环境水样中20种环境内分泌干扰物

    通讯作者: 杨远, E-mail: yangyuan041@163.com
  • 1. 湖南农业大学, 植物激素与生长发育湖南省重点实验室, 长沙, 410128;
  • 2. 长沙海关技术中心, 食品安全科学技术湖南省重点实验室, 长沙, 410004;
  • 3. 中南大学, 水环境与农产品安全湖南省重点实验室, 长沙, 410083;
  • 4. 湖南农业大学, 资源环境学院, 长沙, 410128
基金项目:

2018年湖南农业大学校青年基金(620290118014-18QN14)资助.

摘要: 环境内分泌干扰物(EDCs)是指干扰生物体内保持自身平衡和调节发育过程中天然激素的外源性化学物质.因EDCs对环境暴露生物体正常生长发育和繁殖带来的潜在危害,其已成为当前科学界和公众共同关注的热点问题之一.本论文建立了固相萃取-高效液相色谱-串联质谱测定水样中4类EDCs(孕激素、雄激素、雌激素和烷基酚)的分析方法.水样通过HLB小柱进行固相萃取和纯化,以甲醇和水为正模式流动相,孕激素和雄激素等物质在正模式下响应高;甲醇和0.1%氨水为负模式流动相,雌激素和烷基酚等物质在负模式下响应高.20种EDCs的定量分析通过三重四极杆串联质谱多反应监测模式分析.各目标物的检出限为0.04-0.51 ng·L-1,定量限为0.13-1.70 ng·L-1,回收率为76.1%-121.6%,相对标准偏差<15%.应用该方法对不同水体(河流水、湖泊水和生活污水)中EDCs的分布状况进行了初步调查,发现EDCs广泛存在于表层水样中,浓度范围为ND-981.1 ng·L-1.

English Abstract

参考文献 (32)

目录

/

返回文章
返回