贵州煤矿集中开采区地表水重金属污染特征

刘伟, 刘胜华, 秦文, 张建美, 潘红忠. 贵州煤矿集中开采区地表水重金属污染特征[J]. 环境化学, 2020, (7): 1788-1799. doi: 10.7524/j.issn.0254-6108.2019042903
引用本文: 刘伟, 刘胜华, 秦文, 张建美, 潘红忠. 贵州煤矿集中开采区地表水重金属污染特征[J]. 环境化学, 2020, (7): 1788-1799. doi: 10.7524/j.issn.0254-6108.2019042903
LIU Wei, LIU Shenghua, QIN Wen, ZHANG Jianmei, PAN Hongzhong. The characteristics of heavy metals pollution in surface water at the intensive coal mining area in Guizhou[J]. Environmental Chemistry, 2020, (7): 1788-1799. doi: 10.7524/j.issn.0254-6108.2019042903
Citation: LIU Wei, LIU Shenghua, QIN Wen, ZHANG Jianmei, PAN Hongzhong. The characteristics of heavy metals pollution in surface water at the intensive coal mining area in Guizhou[J]. Environmental Chemistry, 2020, (7): 1788-1799. doi: 10.7524/j.issn.0254-6108.2019042903

贵州煤矿集中开采区地表水重金属污染特征

    通讯作者: 张建美, E-mail: wf-zjm@163.com
  • 基金项目:

    国家自然科学基金青年项目(41401545),麻江县摆沙河区域水环境质量调查(GZKHZB2018-012)和湿地生态与农业利用教育部工程研究中心(KFT201903)资助.

The characteristics of heavy metals pollution in surface water at the intensive coal mining area in Guizhou

    Corresponding author: ZHANG Jianmei, wf-zjm@163.com
  • Fund Project: Supported by National Natural ScienceFoundation of China Youth Program(41401545), Investigation on Water Environment Quality in Baisha River Area, Majang County(GZKHZB2018-012) and Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education (KFT201903).
  • 摘要: 对贵州煤矿集中开采区地表水重金属污染情况进行评价,掌握重金属污染迁移特征,采用数理统计分析、Pearson相关性分析以及综合污染指数评价法对贵州省摆沙河流域煤矿区周边13个监测点共9项污染指标进行评价分析.结果表明,该区域地表水中总铁、锰、铝和汞的富集程度较高,浓度均值分别为68.48、2.75、9.91 mg·L-1和0.0035 mg·L-1,均超出了地表水质量标准限定值,且汞超标率高达100%.总铁、锰、铬、铝、锌属于高度变异,部分地区污染严重,且区域性极强,污染情况随矿区位置不同而呈现显著差异.总铁、锰、铝、锌之间具有较显著的正相关关系,表明该4种污染物质来源一致或相似,总铁及铝均与pH呈强负相关性,说明pH影响重金属的浸出性能.13个地区中毛坡栗(G8)污染程度较轻,新寨2(G2)、陆家桥(G13)为重度污染,其他10个监测点均为严重污染,其中翁威主矿处(G4)污染最为严重;总铁、锰、汞的影响权重值较高,新寨1(G1)、翁威主矿处(G4)、两岔河(G6)、楼梯冲(G7)、瓦厂河(G9)总铁、锰污染程度较高,新寨2(G2)、翁威2(G5)、豆芽井(G10)、上坝(G11)、蛋托厂(G12)、陆家桥(G13)地区受汞污染影响严重.
  • 加载中
  • [1] 罗海波, 刘方, 邓为难, 等. 贵州省煤矸石堆场径流污染特征及其对溪流水质的影响[J]. 水土保持通报, 2010(4):148-151. LUO H B, LIU F, DENG W N, et al. Pollution characteristics of surface runoff from gangue yards in Guizhou Province and its impacts on water quality of rivers[J]. Bulletin of Soil and Water Conservation, 2010

    (4):148-151(in Chinese).

    [2] CHADWICK M J, HIGHTON N, LINDMAN N. Environmental impacts of coal mining&utilization:A complete revision of environmental implications of expanded coal utilization[J]. Nature, 1987, 196:347-350.
    [3] 廖四海, 杜勇立, 刘振华, 等. 煤矸石堆放地周围土壤中重金属的污染特性及评价[J]. 环境工程, 2014, 32(8):118-120.

    LIAO S H, DU Y L, LIU Z H, et al. The polluion characteristics and risk assessment of heavy metals in gangue piling site to surrounding soil[J]. Environmental Engineering, 2014, 32(8):118-120(in Chinese).

    [4] QUADROS P D D, ZHALNINA K, DAVIS-RICHARDSON A G, et al. Coal mining practices reduce the microbial biomass, richness and diversity of soil[J]. Applied Soil Ecology, 2015, 98:195-203.
    [5] GRIPPO R S, DUNSON W A. The body ion loss biomarker. 1. Interactions between trace metals and low pH in reconstituted coal mine-polluted water[J]. Environmental Toxicology & Chemistry, 1996, 15(11):1955-1963.
    [6] 王兴明, 张瑞良, 王运敏, 等. 淮南某煤矿邻近农田土壤中重金属的生态风险研究[J]. 生态环境学报, 2016, 25(5):877-884.

    WANG X M, ZHANG R L, WANG Y M, et al. Eco-toxicity effect of heavy metals in cropland soils collected from the vicinity of a coal mine in Huainan[J]. Journal of Ecological Environment, 2016, 25(5):877-884(in Chinese).

    [7] 庞文品, 秦樊鑫, 吕亚超, 等. 贵州兴仁煤矿区农田土壤重金属化学形态及风险评估[J]. 应用生态学报, 2016, 27(5):1468-1478.

    PANG W P, QIN F X, LV Y C, et al. Chemical speciations of heavy metals and their risk assessment in agricultural soils in a coal mining area from Xingren County, Guizhou Province, China[J]. Chinese Journal of Applied Ecology, 2016, 27(5):1468-1478(in Chinese).

    [8] LIANG J, FENG C, ZENG G, et al. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China[J]. Environmental Pollution, 2017, 225:681-690.
    [9] WANG X, ZHOU C, LIU G, et al. Transfer of metals from soil to crops in an area near a coal gangue pile in the guqiao coal mine, China[J]. Analytical Letters, 2013, 46(12):1962-1977.
    [10] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5):1689-1692.

    Ministry of Environmental Protection, The Ministry of Land and Resources. National soil pollution survey bulletin[J]. China Environmental Protection Industry, 2014, 36(5):1689-1692(in Chinese).

    [11] 宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013, 20(2):293-298.

    SONG W, CHEN B M, LIU L. Soil heavy metal pollution of cultivated land in China[J]. Research of Soil and Water Conservation, 2013, 20(2):293-298(in Chinese).

    [12] BILALI L E, RASMUSSEN P E, HALL G E M, et al. Role of sediment composition in trace metal distribution in lake sediments[J]. Applied Geochemistry, 2002, 17(9):1171-1181.
    [13] ROTHWELL J J, EVANS M G, ALLOTT T E H. Sediment-water interactions in an eroded and heavy metal contaminated peatland catchment, Southern Pennines, UK[J]. Water, Air and Soil Pollution:Focus, 2006, 6(5-6):669-676.
    [14] 李长春, 张光胜, 姚峰, 等. 新疆准东煤田五彩湾露天矿区土壤重金属污染评估与分析[J]. 环境工程, 2014(7):142-146. LI C C, ZHANG G S, YAO F, et al. Assessment of soil heavy metal pollution in area of Xingjiang Zhundong Wucai-wan surface coal mine[J]. Environmental Engineering, 2014

    (7):142-146(in Chinese).

    [15] LI Z, MA Z, KUIJP T J V D, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2013, 468-469C:843-853.
    [16] 吴先亮, 黄先飞, 全文选, 等. 黔西煤矿区周边土壤重金属形态特征、污染评价及富集植物筛选[J]. 水土保持通报, 2018, 38(5):319-327.

    WU X L, HUANG X F, QUAN W X, et al. Chemical forms and risk assessment of heavy metals in soils and selected hypertolerant plants around a coal mining area in western Guizhou Province[J]. Bulletin of Soil and Water Conservation, 2018, 38(5):319-327(in Chinese).

    [17] WILLIAMS S. Pearson's correlation coefficient.[J]. New Zealand Medical Journal, 1996, 109(1015):38.
    [18] TING H, LIANGEN Z, YAN Z, et al. Water quality comprehensive index method of eltrix river in Xinjiang Province using SPSS[J]. Procedia Earth & Planetary Science, 2012, 5(8):314-321.
    [19] DUTILLEUL, STOCKWELL J D, et al. The mantel test versus pearson's correlation analysis:Assessment of the differences for biological and environmental studies[J]. Journal of Agricultural Biological & Environmental Statistics, 2000, 5(2):131-150.
    [20]
    [21] 欧亚波, 李泽琴. 地下水水质评价中相关性分析方法的应用[J]. 广东微量元素科学, 2007, 14(8):18-22.

    OU Y B, LI Z Q. Application of correlation analysis in assessment on groundwater[J]. Guangdong Trace Elements Science, 2007, 14(8):18-22(in Chinese).

    [22] 廖为权, 姜齐. 水质评价的浓度级数法[J]. 水文, 1992(3):25-32. LIAO W Q, JIANG Q. Concentration series method for water quality evaluation[J]. Hydrology, 1992

    (3):25-32(in Chinese).

    [23] 孙钦帮, 高范, 王阳, 等. 广东红海湾海域表层水环境中重金属含量特征及污染评价[J]. 海洋环境科学, 2018, 37(5):64-69

    , 77. SUN Q B, GAO F, WANG Y, et al. The content and pollution evaluation of heavy metals in the surface seawater in Honghai Bay[J]. Marine Environmental Science, 2018, 37(5):64-69, 77(in Chinese).

    [24] 蔡文贵, 林钦, 贾晓平, 等. 考洲洋重金属污染水平与潜在生态危害综合评价[J]. 生态学杂志, 2005, 24(3):343-347.

    CAI W G, LIN Q, JIA X P, et al. Synthetic assessment on pollution level and potential ecological risk of heavy metals in Kaozhou Bay[J]. Chinese Journal of Ecology, 2005, 24(3):343-347(in Chinese).

    [25]
    [26] SUN L H, LIU X H, CHENG C. Quality of water from subsidence area:A case study in the Luling coal mine, northern Anhui Provice, China[J]. Water Practice&Technology,2015, 10(4):777-786.
    [27] 战玉柱, 姜霞, 陈春霄, 等. 太湖西南部沉积物重金属的空间分布特征和污染评价[J]. 环境科学研究, 2011, 24(4):363-370.

    ZHAN Y Z, JIANG X, CHEN C X, et al. Spatial distribution characteristics and pollution assessment of heavy metals in sediments from the southwestern part of Taihu lake[J]. Research of Environmental Sciences, 2011, 24(4):363-370(in Chinese).

    [28] WILDING L P. Spatial variability:Its documentation, accommodation and implication to soil surveys[R]. Pudoc, Wageningen, Netherlands:Soil Spatial Variability, 1985. 166-193.
    [29] JORDAN G, ROMPAEY A V, SOMODY A, et al. Spatial modelling of contamination in a catchment area impacted by mining:A case study of the Recsk copper mine, Hungary.[J]. Land Contamination & Reclamation, 2015, 17(3-4):3-4.
    [30] TIGHE M, LOCKWOOD P, WILSON S. Adsorption of antimony(Ⅴ) by floodplain soils, amorphous iron (Ⅲ) hydroxide and humic acid[J]. Journal of Environmental Monitoring, 2005, 7(12):1177-1185.
    [31] LENG Y, GUO W, SU S, et al. Removal of antimony(Ⅲ) from aqueous solution by graphene as an adsorbent[J]. Chemical Engineering Journal, 2012, 211/212:406-411.
    [32] KOLKER A, SENIOR C L, QUICK J C. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems[J]. Applied Geochemistry, 2006, 21(11):1821-1836.
    [33] BEAT M, SIGG L. Interaction of trace metals with natural particle surfaces:Comparison between adsorption experiments and field measurements[J]. Aquatic Sciences, 1990, 52(1):75-92.
    [34] 刘耀谦, 孙省利. 电厂排水口附近海域pH与重金属的耦合关系[J]. 广州化工, 2016, 44(11):179-181.

    LIU Y Q, SUN S L. Relationship between pH and heavy metals in sea area near outfall of power plant[J]. Guangzhou Chemical Industry, 2016, 44(11):179-181(in Chinese).

    [35] CANTWELL M G, BURGESS R M, KING J W. Resuspension of contaminated field and formulated reference sediments Part Ⅰ:Evaluation of metal release under controlled laboratory conditions[J]. Chemosphere, 2008, 73(11):1824-1831.
    [36] LORS C, TIFFREAU C, LABOUDIGUE A. Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments[J]. Chemosphere, 2004, 56(6):619-630.
    [37] TEMMINGHOFF E J M, VAN D Z, SJOERD E A T M. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter[J]. Environmental Science & Technology, 1997, 31(4):1109-1115.
    [38] DESOGUS P, MANCA P P, GIAMPAOLO, et al. Heavy metal leaching of contaminated soils from a metallurgical plant[J]. International Journal of Mining, Reclamation and Environment, 2013, 27(3):202-214.
    [39] 李鹏, 曾光明, 徐卫华, 等. 有机酸对污染底泥中Zn和Pb浸出的影响[J]. 中国环境科学, 2010, 30(9):1235-1240.

    LI P, ZNG G M, XU W H, et al. Effects of organic acids on zinc and lead leaching from contaminated sediments[J]. China Environmental Science, 2010, 30(9):1235-1240(in Chinese).

    [40] 韦金莲, 徐文彬, 韩兆元, 等. 铅锌矿选矿过程的重金属元素平衡及其环境效应[J]. 环境污染与防治, 2013, 35(11):10-13

    ,18. WEI J L, XU W B, HAN Z Y, et al. Element balance of heavy metals and their environmental effect during dressing process of plumbum-zinc ore[J]. Environmental Pollution and Control, 2013, 35(11):10-13,18(in Chinese).

    [41] 杨倩倩. 城市污水污泥中重金属的物化浸提及其形态研究[D]. 哈尔滨:哈尔滨工业大学, 2010. YANG Q Q. Study on physical and chemical extraction and morphology of heavy metals from municipal sewage sludge[D]. Harbin:Harbin Institute of Technology, 2010(in Chinese).
    [42] PAN W, TANG C, LIU C, et al. Geochemical distribution and removal of As, Fe, Mn and Al in a surface water system affected by acid mine drainage at a coalfield in Southwestern China[J]. Environmental Geology, 2009, 57(7):1457-1467.
    [43] LENGKE M F, TEMPEL R N. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment[J]. Geochimica Et Cosmochimica Acta, 2005, 69(2):341-356.
    [44] SUN W, XIAO T, SUN M, et al. Diversity of the sediment microbial community in the Aha Watershed (Southwest China) in response to acid mine drainage pollution gradients[J]. Applied and Environmental Microbiology, 2015, 81(15):4874-4884.
    [45] ATANACKOVIĆ N, DRAGIŠIĆ V, STOJKOVIĆ J. Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality[J]. Environmental Science and Pollution Research International, 2013, 20(11):7615-7626.
    [46] 李天杰.土壤环境化学[M]. 北京:高等教育出版社, 1995:112-113. LI T J. Soil environmental chemistry[M]. Beijing:Higher Education Press, 1995:112

    -113(in Chinese).

    [47] 罗有发, 吴永贵, 付天岭, 等. 不同有机物料对风化煤矸石污染释放及介质养分的影响[J]. 环境科学与技术, 2015, 38(7):82-87.

    LUO Y F, WU Y G, FU T L, et al. Effects of organic materials on the release of contaminant and nutrient from the weathering coal gangue[J]. Environmental Science & Technology, 2015, 38(7):82-87(in Chinese).

    [48] 曾红晓, 顾尚义. 睛隆锑矿和煤矿矿集区岩溶地下水环境质量评估[J]. 中国环境监测, 2017, 33(6):78-86.

    ZENG H X, GU S Y. Environmental quality assessment on karst groundwater in antimony and coal mines concentration area of Qinglong[J]. Environmental Monitoring in China, 2017, 33(6):78-86(in Chinese).

    [49] 孙国敏, 王春雷, 张淑霞. 黑龙江省地表水铁锰超标成因分析[J]. 东北水利水电, 2013, 31(4):34-35

    , 40. SUN G M, WANG C L, ZHANG S X. Causes of excessive iron and manganese in surface water in Heilongjiang Province[J]. Water Resources & Hydropower of Northeast China, 2013, 31(4):34-35, 40(in Chinese).

    [50] SYAFRIYONO S, CAESARIO D, SWASTIKA A, et al. Rock physics and petrographic parameters relationship within siliciclastic rocks:Quartz sandstone outcrop study case[J]. IOP Conference Series Earth and Environmental Science, 2018, 132(1):012004.
    [51] MALEKZADEH S A, KARIMPOUR M H. Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (copper) deposit, Eastern Iran[J]. Journal of African Earth Sciences, 2015, 107:1-14.
    [52] 胡文容, 高廷耀. 煤矿酸性矿井水除铁研究[J]. 水文地质工程地质, 1995(4):24-28. HU W R, GAO T Y. Study on iron removal by acid mine drainage in coal mine[J]. Hydrogeologyand Engineering Geology, 1995

    (4):24-28(in Chinese).

    [53] FENG X, SOMMAR J, LINDQVIST O, et al. Occurrence, emissions and deposition of mercury during coal combustion in the Province Guizhou, China[J]. Water Air & Soil Pollution, 2002, 139(1/4):311-324.
    [54] YUDOVICH, YA E, KETRIS, et al. Mercury in coal:A review. Part 1. Geochemistry[J]. International Journal of Coal Geology, 2005, 62(3):107-134.
    [55] 黄晓雨, 郑刘根, 张强伟, 等. 卧龙湖煤矿岩浆蚀变煤层中汞的分布与赋存特征[J]. 高校地质学报, 2015, 21(2):280-287.

    HUANG X Y, ZHEN L G, ZHANG Q W,et al. Distribution and modes of occurrence of mercury in coal seams altered by magmatic hydrothermal from wolonghu coal mine[J]. Geological Journal of China Universities, 2015, 21(2):280-287(in Chinese).

  • 加载中
计量
  • 文章访问数:  2460
  • HTML全文浏览数:  2460
  • PDF下载数:  89
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-04-29
刘伟, 刘胜华, 秦文, 张建美, 潘红忠. 贵州煤矿集中开采区地表水重金属污染特征[J]. 环境化学, 2020, (7): 1788-1799. doi: 10.7524/j.issn.0254-6108.2019042903
引用本文: 刘伟, 刘胜华, 秦文, 张建美, 潘红忠. 贵州煤矿集中开采区地表水重金属污染特征[J]. 环境化学, 2020, (7): 1788-1799. doi: 10.7524/j.issn.0254-6108.2019042903
LIU Wei, LIU Shenghua, QIN Wen, ZHANG Jianmei, PAN Hongzhong. The characteristics of heavy metals pollution in surface water at the intensive coal mining area in Guizhou[J]. Environmental Chemistry, 2020, (7): 1788-1799. doi: 10.7524/j.issn.0254-6108.2019042903
Citation: LIU Wei, LIU Shenghua, QIN Wen, ZHANG Jianmei, PAN Hongzhong. The characteristics of heavy metals pollution in surface water at the intensive coal mining area in Guizhou[J]. Environmental Chemistry, 2020, (7): 1788-1799. doi: 10.7524/j.issn.0254-6108.2019042903

贵州煤矿集中开采区地表水重金属污染特征

    通讯作者: 张建美, E-mail: wf-zjm@163.com
  • 1. 长江大学资源与环境学院, 武汉, 430100;
  • 2. 贵州省煤矿地质工程咨询与地质环境检测中心, 贵阳, 550081;
  • 3. 湿地生态与农业利用教育部工程研究中心, 荆州, 434000
基金项目:

国家自然科学基金青年项目(41401545),麻江县摆沙河区域水环境质量调查(GZKHZB2018-012)和湿地生态与农业利用教育部工程研究中心(KFT201903)资助.

摘要: 对贵州煤矿集中开采区地表水重金属污染情况进行评价,掌握重金属污染迁移特征,采用数理统计分析、Pearson相关性分析以及综合污染指数评价法对贵州省摆沙河流域煤矿区周边13个监测点共9项污染指标进行评价分析.结果表明,该区域地表水中总铁、锰、铝和汞的富集程度较高,浓度均值分别为68.48、2.75、9.91 mg·L-1和0.0035 mg·L-1,均超出了地表水质量标准限定值,且汞超标率高达100%.总铁、锰、铬、铝、锌属于高度变异,部分地区污染严重,且区域性极强,污染情况随矿区位置不同而呈现显著差异.总铁、锰、铝、锌之间具有较显著的正相关关系,表明该4种污染物质来源一致或相似,总铁及铝均与pH呈强负相关性,说明pH影响重金属的浸出性能.13个地区中毛坡栗(G8)污染程度较轻,新寨2(G2)、陆家桥(G13)为重度污染,其他10个监测点均为严重污染,其中翁威主矿处(G4)污染最为严重;总铁、锰、汞的影响权重值较高,新寨1(G1)、翁威主矿处(G4)、两岔河(G6)、楼梯冲(G7)、瓦厂河(G9)总铁、锰污染程度较高,新寨2(G2)、翁威2(G5)、豆芽井(G10)、上坝(G11)、蛋托厂(G12)、陆家桥(G13)地区受汞污染影响严重.

English Abstract

参考文献 (55)

返回顶部

目录

/

返回文章
返回