热解温度对生物炭理化性质和吸湿性的影响

赵越, 赵保卫, 刘辉, 李刘军, 张鑫. 热解温度对生物炭理化性质和吸湿性的影响[J]. 环境化学, 2020, (7): 2005-2012. doi: 10.7524/j.issn.0254-6108.2019050401
引用本文: 赵越, 赵保卫, 刘辉, 李刘军, 张鑫. 热解温度对生物炭理化性质和吸湿性的影响[J]. 环境化学, 2020, (7): 2005-2012. doi: 10.7524/j.issn.0254-6108.2019050401
ZHAO Yue, ZHAO Baowei, LIU Hui, LI Liujun, ZHANG Xin. Effect of pyrolysis temperature on physicochemical properties and hygroscopicity of biochar[J]. Environmental Chemistry, 2020, (7): 2005-2012. doi: 10.7524/j.issn.0254-6108.2019050401
Citation: ZHAO Yue, ZHAO Baowei, LIU Hui, LI Liujun, ZHANG Xin. Effect of pyrolysis temperature on physicochemical properties and hygroscopicity of biochar[J]. Environmental Chemistry, 2020, (7): 2005-2012. doi: 10.7524/j.issn.0254-6108.2019050401

热解温度对生物炭理化性质和吸湿性的影响

    通讯作者: 赵保卫, E-mail: baoweizhao@mail.lzjtu.cn
  • 基金项目:

    国家自然科学基金(51766008,21467013,21167007)资助.

Effect of pyrolysis temperature on physicochemical properties and hygroscopicity of biochar

    Corresponding author: ZHAO Baowei, baoweizhao@mail.lzjtu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (51766008, 21467013, 21167007).
  • 摘要: 土壤水分是动植物生长发育的基础,而在土壤中添加生物炭可以提高土壤的持水性能.生物炭影响土壤水分的机制除了通过影响土壤结构外,还与生物炭自身的结构和性质有关.本研究分别选取小麦、玉米和水稻秸秆,在300℃、500℃和700℃条件下限氧热解制得生物炭.通过对生物炭元素组成、比表面和红外光谱分析测定,对其表面结构、孔径和表面官能团等理化性质进行了表征,同时用重量法对生物炭的吸湿性进行测定.通过对生物炭理化性质的分析,初步探讨了热解温度对生物炭吸湿性的影响.结果表明,随着热解温度的上升,3种秸秆类生物炭都逐渐向芳构化趋势发展,极性、亲水性逐渐减弱.相同热解温度下玉米秆炭的BET比表面积最大,而微孔体积和平均孔径的大小为稻秆炭 > 玉米秆炭 > 麦秆炭.当热解温度升高时,BET比表面积和微孔体积迅速上升,平均孔径则逐渐减小.FTIR图谱表征表明,不同原料制得的生物炭在相同热解温度下的表面官能团种类相近.原料和热解温度对生物炭的吸湿性影响显著,相同热解温度下玉米秆炭的吸湿效果最好,300℃的玉米秆炭可达到的最大吸湿量为5.68%.300℃和700℃的热解温度更有利于生物炭吸收水分.不同的湿度会影响生物炭的吸湿量,300℃的玉米秆炭在70%湿度下的吸湿量要比50%时高2.18%.
  • 加载中
  • [1] MA Q, SONG W, WANG R, et al. Physicochemical properties of biochar derived from anaerobically digested dairy manure[J]. Waste Management, 2018, 79:729-734.
    [2] MOHAN D, SARSWAT A, OK Y S, et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review[J]. Bioresource Technology, 2014, 160:191-202.
    [3] QIAN K, KUMAR A, ZHANG H, et al. Recent advances in utilization of biochar[J]. Renewable and Sustainable Energy Reviews, 2015, 42:1055-1064.
    [4] GLASER B, HAUMAIER L, GUGGENBERGER G, et al. The ‘Terra Preta’ phenomenon:A model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften, 2001, 88(1):37-41.
    [5] HARDIE M, CLOTHIER B, BOUND S, et al. Does biochar influence soil physical properties and soil water availability?[J]. Plant and Soil, 2014, 376(1-2):347-361.
    [6] 何云勇, 李心清, 杨放, 等. 裂解温度对新疆棉秆生物炭物理化学性质的影响[J]. 地球与环境, 2016, 44(1):19-24.

    HE Y Y, LI X Q, YANG F, et al. Effect of pyrolysis temperature on physicochemical properties of Xinjiang cotton stalk biochar[J]. Earth and the Environment, 2016, 44(1):19-24(in Chinese).

    [7] 王丹丹, 郑纪勇, 颜永毫, 等. 生物炭对宁南山区土壤持水性能影响的定位研究[J]. 水土保持学报, 2013, 27(2):101-104

    , 109. WANG D D, ZHENG J Y, YAN Y H, et al. Localization study on effect of biochar on soil water holding capacity in southern Ningxia region[J]. Journal of Soil and Water Conservation, 2013, 27(2):101-104, 109(in Chinese).

    [8] GLASER B, LEHMANN J, ZECH W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-A review[J]. Biology and Fertility of Soils, 2002, 35:219-230.
    [9] JEFFERY S, VERHEIJEN FG, VAN DER VELDE M, et.al. A quantitative review of theeffects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 144(1):175-187.
    [10] CHAN K Y, VAN ZWIETEN L, MESZAROS I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Soil Research, 2008, 45(8):629-634.
    [11] CHEN W H, LIN B J, COLIN B, et al. Hygroscopic transformation of woody biomass torrefaction for carbon storage[J]. Applied Energy, 2018, 231:768-776.
    [12] 赵力, 陈建, 李浩, 等. 裂解温度和酸处理对生物炭中持久性自由基产生的影响[J]. 环境化学, 2017, 36(11):2472-2478.

    ZHAO L, CHEN J, LI H, et al. Effects of pyrolysis temperature and acid treatment on the generation of free radicals in biochars[J]. Environmental Chemistry, 2017, 36(11):2472-2478(in Chinese).

    [13] CHENG C H, LEHMANN J, ENGELHARD M H. Natural oxidation of black carbon in soils:Changes in molecular form and surface charge along a climosequence[J]. Geoehimicaet Cosmochimica Acta, 2008, 72:1598-1610.
    [14] 林珈羽, 童仕唐. 生物炭的制备及其性能研究[J]. 环境科学与技术, 2015, 38(12):54-58.

    LIN J Y, TONG S T. Preparation and properties of biochar[J]. Environmental Science and Technology, 2015, 38(12):54-58(in Chinese).

    [15] 吴伟祥, 孙雪, 董达, 等. 生物质炭土壤环境效应[M]. 北京:科学出版社, 2015. WU W X, SUN X, DONG D, et al. Environmental effects of biochar in soil[M]. Beijing:Science Press, 2015(in Chinese).
    [16] 常西亮, 胡雪菲, 蒋煜峰, 等. 不同温度下小麦秸秆生物炭的制备及表征[J]. 环境科学与技术, 2017, 40(4):24-29.

    CHANG X L, HU X F, JIANG Y F, et al. Preparation and characterization of wheat straw biochar at different temperatures[J]. Environmental Science and Technology, 2017, 40(4):24-29(in Chinese).

    [17] PETERSON S C, APPELL M, JACKSON M A, et al. Comparing corn stover and switchgrass biochar:Characterization and sorption properties[J]. Journal of Agricultural Science, 2013, 5(1):1-8.
    [18] CHEN H, LIN G, WANG X, et al. Physicochemical properties and hygroscopicity of tobacco stem biochar pyrolyzed at different temperatures[J]. Journal of Renewable and Sustainable Energy, 2016, 8(1):013112.
    [19] 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州:中国科学院大学, 2017. WEI S Y. Effects of different biomass raw materials and preparation temperature on physicochemical characteristics of biochar[D]. Guangzhou:University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2017(in Chinese).
    [20] SHARMA R K, WOOTEN J B, BALIGA V L, et al. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004, 83(11-12):1469-1482.
    [21] 许冬倩. 玉米秸秆生物炭制备及结构特性分析[J]. 广西植物, 2018, 38(9):1125-1135.

    XU D Q. Preparation and structural characteristics of corn straw biochar[J]. Guangxi Plants, 2018, 38(9):1125-1135(in Chinese).

    [22] 付鹏. 生物质热解气化气相产物释放特性和焦结构演化行为研究.[D]. 武汉:华中科技大学, 2010. FU P. Study on the release characteristics of gaseous products from biomass pyrolysis and the evolution of coke structure[D]. Wuhan:Huazhong University of Science and Technology, 2010(in Chinese).
    [23] 林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征[J]. 环境化学, 2017, 36(10):2107-2114.

    LIN Z Y, JIANG C C, ZHANG M Y. Characterization of physical and chemical properties and microstructure of biochar after aging[J]. Environmental Chemistry, 2017, 36(10):2107-2114(in Chinese).

    [24] DILEK A, SEVGI Ş. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.)[J]. International Journal of Phytoremediation, 2014, 16(7-8):684-693.
    [25] MARCO K, PETER S N, MARK G J. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1247-1253.
    [26] 戴静, 刘阳生. 生物炭的性质及其在土壤环境中应用的研究进展[J]. 土壤通报, 2013, 44(6):1520-1525.

    DAI J, LIU Y S. Research progress on the properties of biochar and its application in soil environment[J]. Soil Bulletin, 2013, 44(6):1520-1525(in Chinese).

    [27] SONG X, XUE X, CHEN D, et al. Application of biochar from sewage sludge to plant cultivation:Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation[J]. Chemosphere, 2014,109:213-220.
    [28] 林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016, 10(6):3200-3206.

    LIN J Y, ZHANG Y, LIU W, et al. The structure and properties of biochar prepared at different raw materials and carbonization temperature[J]. Journal of Environmental Engineering, 2016, 10(6):3200-3206(in Chinese).

    [29] 张向前, 侯国军, 张玉虎, 等. 不同产地水稻秸秆制备生物炭结构特征及其理化性质[J]. 环境工程, 2017, 35(9):122-126.

    ZHANG X Q, HOU G J, ZHANG Y H, et al. Structural characteristics and physicochemical properties of biochar prepared from rice straw from different habitats[J]. Environmental Engineering, 2017, 35(9):122-126(in Chinese).

    [30] 郑浩. 芦竹生物炭对农业土壤环境的影响[D]. 青岛:中国海洋大学, 2013. ZHENG H. Effect of biochar on agricultural soil environment[D]. Qingdao:Ocean University of China, 2013(in Chinese).
    [31] 肖欣. 生物炭的多级结构特征、构效关系及其吸附作用研究[D]. 杭州:浙江大学, 2018. XIAO X. Study on multistage structure, structure-activity relationship and adsorption of biochar[D]. Hangzhou:Zhejiang University, 2018(in Chinese).
    [32] 余峻峰, 陈培荣, 俞志敏,等. KOH活化木屑生物炭制备活性炭及其表征[J]. 应用化学, 2013, 30(9):1017-1022.

    YU J F, CHEN P R, YU Z M, et al. Preparation and characterization of activated carbon from KOH activated biochar from sawdust[J]. Applied Chemistry, 2013, 30(9):1017-1022(in Chinese).

    [33] 林肖庆, 吕豪豪, 刘玉学, 等. 生物质原料及炭化温度对生物炭产率与性质的影响[J]. 浙江农业学报, 2016, 28(7):1216-1223.

    LIN X Q, LV H H, LIU Y X, et al. Effects of biomass raw materials and carbonization temperature on the yield and properties of biochar[J]. Zhejiang Agricultural Journal, 2016, 28(7):1216-1223(in Chinese).

    [34] STEFANIE K, FRANZ Z, ALEX D, et al. Characterization of slow pyrolysis biochars:Effects of feedstocks and pyrolysis temperature on biochar properties[J]. Environ Qual, 2012, 41(4):990-1000.
    [35] WANG S, GAO B, ZIMMERMAN A R, et al. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass[J]. Chemosphere, 2015, 134:257-262.
    [36] 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016, 36(5):1757-1765.

    JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on biochar preparation from rice straw[J]. Journal of Environmental Science, 2016, 36(5):1757-1765(in Chinese).

    [37] HOSSAIN M K, STREZOV V, CHAN K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 2011, 92(1):223-228.
    [38] 饶潇潇, 方昭, 王建超, 等. 花生壳生物炭的制备、表征及其吸附性能[J]. 环境科学与技术, 2017, 40(6):14-18.

    RAO X X, FANG Z, WANG J C, et al. Preparation, characterization and adsorption of peanut shell biochar[J]. Environmental Science and Technology, 2017, 40(6):14-18(in Chinese).

    [39] BRIGGS C, GRAHAM R C, BREINER J M. Physical and chemical properties of pnus ponderosa charcoal:Implications for soil modification[J]. Soil Science, 2012, 177(4):263-268.
  • 加载中
计量
  • 文章访问数:  3343
  • HTML全文浏览数:  3343
  • PDF下载数:  95
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-04

热解温度对生物炭理化性质和吸湿性的影响

    通讯作者: 赵保卫, E-mail: baoweizhao@mail.lzjtu.cn
  • 兰州交通大学环境与市政工程学院, 兰州, 730000
基金项目:

国家自然科学基金(51766008,21467013,21167007)资助.

摘要: 土壤水分是动植物生长发育的基础,而在土壤中添加生物炭可以提高土壤的持水性能.生物炭影响土壤水分的机制除了通过影响土壤结构外,还与生物炭自身的结构和性质有关.本研究分别选取小麦、玉米和水稻秸秆,在300℃、500℃和700℃条件下限氧热解制得生物炭.通过对生物炭元素组成、比表面和红外光谱分析测定,对其表面结构、孔径和表面官能团等理化性质进行了表征,同时用重量法对生物炭的吸湿性进行测定.通过对生物炭理化性质的分析,初步探讨了热解温度对生物炭吸湿性的影响.结果表明,随着热解温度的上升,3种秸秆类生物炭都逐渐向芳构化趋势发展,极性、亲水性逐渐减弱.相同热解温度下玉米秆炭的BET比表面积最大,而微孔体积和平均孔径的大小为稻秆炭 > 玉米秆炭 > 麦秆炭.当热解温度升高时,BET比表面积和微孔体积迅速上升,平均孔径则逐渐减小.FTIR图谱表征表明,不同原料制得的生物炭在相同热解温度下的表面官能团种类相近.原料和热解温度对生物炭的吸湿性影响显著,相同热解温度下玉米秆炭的吸湿效果最好,300℃的玉米秆炭可达到的最大吸湿量为5.68%.300℃和700℃的热解温度更有利于生物炭吸收水分.不同的湿度会影响生物炭的吸湿量,300℃的玉米秆炭在70%湿度下的吸湿量要比50%时高2.18%.

English Abstract

参考文献 (39)

目录

/

返回文章
返回