热解温度对生物炭理化性质和吸湿性的影响
Effect of pyrolysis temperature on physicochemical properties and hygroscopicity of biochar
-
摘要: 土壤水分是动植物生长发育的基础,而在土壤中添加生物炭可以提高土壤的持水性能.生物炭影响土壤水分的机制除了通过影响土壤结构外,还与生物炭自身的结构和性质有关.本研究分别选取小麦、玉米和水稻秸秆,在300℃、500℃和700℃条件下限氧热解制得生物炭.通过对生物炭元素组成、比表面和红外光谱分析测定,对其表面结构、孔径和表面官能团等理化性质进行了表征,同时用重量法对生物炭的吸湿性进行测定.通过对生物炭理化性质的分析,初步探讨了热解温度对生物炭吸湿性的影响.结果表明,随着热解温度的上升,3种秸秆类生物炭都逐渐向芳构化趋势发展,极性、亲水性逐渐减弱.相同热解温度下玉米秆炭的BET比表面积最大,而微孔体积和平均孔径的大小为稻秆炭 > 玉米秆炭 > 麦秆炭.当热解温度升高时,BET比表面积和微孔体积迅速上升,平均孔径则逐渐减小.FTIR图谱表征表明,不同原料制得的生物炭在相同热解温度下的表面官能团种类相近.原料和热解温度对生物炭的吸湿性影响显著,相同热解温度下玉米秆炭的吸湿效果最好,300℃的玉米秆炭可达到的最大吸湿量为5.68%.300℃和700℃的热解温度更有利于生物炭吸收水分.不同的湿度会影响生物炭的吸湿量,300℃的玉米秆炭在70%湿度下的吸湿量要比50%时高2.18%.Abstract: Soil moisture is crucial for the growth and development of plants and animals. The addition of biochar to soil has potential to improve soil water retention. The influence mechanisms of biochar to soil water retention is confirmed by the unique characteristics and structures of biochar, besides biochar affected the soil structure. Herein, wheat, corn, and rice straw were used to produce biochars at pyrolysis temperatures of 300℃, 500℃, and 700℃, respectively. Through element composition analysis, specific surface measurement, and infrared spectroscopy, the physicochemical properties of biochars such as surface structure, pore size and surface functional groups were characterized. Meanwhile, the hygroscopicity of biochars were determined by weight method. The effect of pyrolysis temperature on the hygroscopicity of biochar was studied by analyzing the physicochemical properties of biochar. The results showed that the three kinds of straw biochars underwent aromatization process, and the polarity and hydrophilicity gradually decreased with the increasing pyrolysis temperature. The BET specific surface area of corn straw biochar was the largest, while the micropore volume and average pore size were in order of rice straw biochar > corn straw biochar > wheat straw biochar under the same pyrolysis temperature. When the pyrolysis temperature rose, the BET specific surface area and the micropore volume started to rise rapidly, and the average pore size gradually decreased. The FTIR characterization showed that the surface functional groups of biochars prepared from the different biomasses at the same pyrolysis temperature were similar. Biomass and pyrolysis temperature had a significant influence on the hygroscopicity of biochars. The water absorption effect of corn straw biochar was the best at the same pyrolysis temperature and the maximum water absorption of corn straw biochar at 300℃ was 5.68%. 300℃ and 700℃ pyrolysis temperature were more favorable for biochars to absorb water. Different humidities affected the moisture absorption of biochars and the moisture absorption of corn straw biochar at 300℃ at 70% humidity was 2.18% higher than that at 50%.
-
Key words:
- biochar /
- pyrolysis temperature /
- physicochemical properties /
- hygroscopicity
-
-
[1] MA Q, SONG W, WANG R, et al. Physicochemical properties of biochar derived from anaerobically digested dairy manure[J]. Waste Management, 2018, 79:729-734. [2] MOHAN D, SARSWAT A, OK Y S, et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review[J]. Bioresource Technology, 2014, 160:191-202. [3] QIAN K, KUMAR A, ZHANG H, et al. Recent advances in utilization of biochar[J]. Renewable and Sustainable Energy Reviews, 2015, 42:1055-1064. [4] GLASER B, HAUMAIER L, GUGGENBERGER G, et al. The ‘Terra Preta’ phenomenon:A model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften, 2001, 88(1):37-41. [5] HARDIE M, CLOTHIER B, BOUND S, et al. Does biochar influence soil physical properties and soil water availability?[J]. Plant and Soil, 2014, 376(1-2):347-361. [6] 何云勇, 李心清, 杨放, 等. 裂解温度对新疆棉秆生物炭物理化学性质的影响[J]. 地球与环境, 2016, 44(1):19-24. HE Y Y, LI X Q, YANG F, et al. Effect of pyrolysis temperature on physicochemical properties of Xinjiang cotton stalk biochar[J]. Earth and the Environment, 2016, 44(1):19-24(in Chinese).
[7] 王丹丹, 郑纪勇, 颜永毫, 等. 生物炭对宁南山区土壤持水性能影响的定位研究[J]. 水土保持学报, 2013, 27(2):101-104 , 109. WANG D D, ZHENG J Y, YAN Y H, et al. Localization study on effect of biochar on soil water holding capacity in southern Ningxia region[J]. Journal of Soil and Water Conservation, 2013, 27(2):101-104, 109(in Chinese).
[8] GLASER B, LEHMANN J, ZECH W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-A review[J]. Biology and Fertility of Soils, 2002, 35:219-230. [9] JEFFERY S, VERHEIJEN FG, VAN DER VELDE M, et.al. A quantitative review of theeffects of biochar application to soils on crop productivity using meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 144(1):175-187. [10] CHAN K Y, VAN ZWIETEN L, MESZAROS I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Soil Research, 2008, 45(8):629-634. [11] CHEN W H, LIN B J, COLIN B, et al. Hygroscopic transformation of woody biomass torrefaction for carbon storage[J]. Applied Energy, 2018, 231:768-776. [12] 赵力, 陈建, 李浩, 等. 裂解温度和酸处理对生物炭中持久性自由基产生的影响[J]. 环境化学, 2017, 36(11):2472-2478. ZHAO L, CHEN J, LI H, et al. Effects of pyrolysis temperature and acid treatment on the generation of free radicals in biochars[J]. Environmental Chemistry, 2017, 36(11):2472-2478(in Chinese).
[13] CHENG C H, LEHMANN J, ENGELHARD M H. Natural oxidation of black carbon in soils:Changes in molecular form and surface charge along a climosequence[J]. Geoehimicaet Cosmochimica Acta, 2008, 72:1598-1610. [14] 林珈羽, 童仕唐. 生物炭的制备及其性能研究[J]. 环境科学与技术, 2015, 38(12):54-58. LIN J Y, TONG S T. Preparation and properties of biochar[J]. Environmental Science and Technology, 2015, 38(12):54-58(in Chinese).
[15] 吴伟祥, 孙雪, 董达, 等. 生物质炭土壤环境效应[M]. 北京:科学出版社, 2015. WU W X, SUN X, DONG D, et al. Environmental effects of biochar in soil[M]. Beijing:Science Press, 2015(in Chinese). [16] 常西亮, 胡雪菲, 蒋煜峰, 等. 不同温度下小麦秸秆生物炭的制备及表征[J]. 环境科学与技术, 2017, 40(4):24-29. CHANG X L, HU X F, JIANG Y F, et al. Preparation and characterization of wheat straw biochar at different temperatures[J]. Environmental Science and Technology, 2017, 40(4):24-29(in Chinese).
[17] PETERSON S C, APPELL M, JACKSON M A, et al. Comparing corn stover and switchgrass biochar:Characterization and sorption properties[J]. Journal of Agricultural Science, 2013, 5(1):1-8. [18] CHEN H, LIN G, WANG X, et al. Physicochemical properties and hygroscopicity of tobacco stem biochar pyrolyzed at different temperatures[J]. Journal of Renewable and Sustainable Energy, 2016, 8(1):013112. [19] 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州:中国科学院大学, 2017. WEI S Y. Effects of different biomass raw materials and preparation temperature on physicochemical characteristics of biochar[D]. Guangzhou:University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2017(in Chinese). [20] SHARMA R K, WOOTEN J B, BALIGA V L, et al. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004, 83(11-12):1469-1482. [21] 许冬倩. 玉米秸秆生物炭制备及结构特性分析[J]. 广西植物, 2018, 38(9):1125-1135. XU D Q. Preparation and structural characteristics of corn straw biochar[J]. Guangxi Plants, 2018, 38(9):1125-1135(in Chinese).
[22] 付鹏. 生物质热解气化气相产物释放特性和焦结构演化行为研究.[D]. 武汉:华中科技大学, 2010. FU P. Study on the release characteristics of gaseous products from biomass pyrolysis and the evolution of coke structure[D]. Wuhan:Huazhong University of Science and Technology, 2010(in Chinese). [23] 林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征[J]. 环境化学, 2017, 36(10):2107-2114. LIN Z Y, JIANG C C, ZHANG M Y. Characterization of physical and chemical properties and microstructure of biochar after aging[J]. Environmental Chemistry, 2017, 36(10):2107-2114(in Chinese).
[24] DILEK A, SEVGI Ş. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.)[J]. International Journal of Phytoremediation, 2014, 16(7-8):684-693. [25] MARCO K, PETER S N, MARK G J. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1247-1253. [26] 戴静, 刘阳生. 生物炭的性质及其在土壤环境中应用的研究进展[J]. 土壤通报, 2013, 44(6):1520-1525. DAI J, LIU Y S. Research progress on the properties of biochar and its application in soil environment[J]. Soil Bulletin, 2013, 44(6):1520-1525(in Chinese).
[27] SONG X, XUE X, CHEN D, et al. Application of biochar from sewage sludge to plant cultivation:Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation[J]. Chemosphere, 2014,109:213-220. [28] 林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016, 10(6):3200-3206. LIN J Y, ZHANG Y, LIU W, et al. The structure and properties of biochar prepared at different raw materials and carbonization temperature[J]. Journal of Environmental Engineering, 2016, 10(6):3200-3206(in Chinese).
[29] 张向前, 侯国军, 张玉虎, 等. 不同产地水稻秸秆制备生物炭结构特征及其理化性质[J]. 环境工程, 2017, 35(9):122-126. ZHANG X Q, HOU G J, ZHANG Y H, et al. Structural characteristics and physicochemical properties of biochar prepared from rice straw from different habitats[J]. Environmental Engineering, 2017, 35(9):122-126(in Chinese).
[30] 郑浩. 芦竹生物炭对农业土壤环境的影响[D]. 青岛:中国海洋大学, 2013. ZHENG H. Effect of biochar on agricultural soil environment[D]. Qingdao:Ocean University of China, 2013(in Chinese). [31] 肖欣. 生物炭的多级结构特征、构效关系及其吸附作用研究[D]. 杭州:浙江大学, 2018. XIAO X. Study on multistage structure, structure-activity relationship and adsorption of biochar[D]. Hangzhou:Zhejiang University, 2018(in Chinese). [32] 余峻峰, 陈培荣, 俞志敏,等. KOH活化木屑生物炭制备活性炭及其表征[J]. 应用化学, 2013, 30(9):1017-1022. YU J F, CHEN P R, YU Z M, et al. Preparation and characterization of activated carbon from KOH activated biochar from sawdust[J]. Applied Chemistry, 2013, 30(9):1017-1022(in Chinese).
[33] 林肖庆, 吕豪豪, 刘玉学, 等. 生物质原料及炭化温度对生物炭产率与性质的影响[J]. 浙江农业学报, 2016, 28(7):1216-1223. LIN X Q, LV H H, LIU Y X, et al. Effects of biomass raw materials and carbonization temperature on the yield and properties of biochar[J]. Zhejiang Agricultural Journal, 2016, 28(7):1216-1223(in Chinese).
[34] STEFANIE K, FRANZ Z, ALEX D, et al. Characterization of slow pyrolysis biochars:Effects of feedstocks and pyrolysis temperature on biochar properties[J]. Environ Qual, 2012, 41(4):990-1000. [35] WANG S, GAO B, ZIMMERMAN A R, et al. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass[J]. Chemosphere, 2015, 134:257-262. [36] 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016, 36(5):1757-1765. JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on biochar preparation from rice straw[J]. Journal of Environmental Science, 2016, 36(5):1757-1765(in Chinese).
[37] HOSSAIN M K, STREZOV V, CHAN K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 2011, 92(1):223-228. [38] 饶潇潇, 方昭, 王建超, 等. 花生壳生物炭的制备、表征及其吸附性能[J]. 环境科学与技术, 2017, 40(6):14-18. RAO X X, FANG Z, WANG J C, et al. Preparation, characterization and adsorption of peanut shell biochar[J]. Environmental Science and Technology, 2017, 40(6):14-18(in Chinese).
[39] BRIGGS C, GRAHAM R C, BREINER J M. Physical and chemical properties of pnus ponderosa charcoal:Implications for soil modification[J]. Soil Science, 2012, 177(4):263-268. -

计量
- 文章访问数: 4517
- HTML全文浏览数: 4517
- PDF下载数: 170
- 施引文献: 0