韩江三角洲典型地区表层土壤汞的分布特征

张鸣, 温汉辉, 蔡立梅, 罗杰, 王硕, 王秋爽, 穆桂珍, 蒋慧豪. 韩江三角洲典型地区表层土壤汞的分布特征[J]. 环境化学, 2020, (7): 1860-1871. doi: 10.7524/j.issn.0254-6108.2019050905
引用本文: 张鸣, 温汉辉, 蔡立梅, 罗杰, 王硕, 王秋爽, 穆桂珍, 蒋慧豪. 韩江三角洲典型地区表层土壤汞的分布特征[J]. 环境化学, 2020, (7): 1860-1871. doi: 10.7524/j.issn.0254-6108.2019050905
ZHANG Ming, WEN Hanhui, CAI Limei, LUO Jie, WANG Shuo, WANG Qiushuang, MU Guizhen, JIANG Huihao. Distribution characteristics of surface soil mercury in typical area of the Hanjiang Delta, Guangdong, China[J]. Environmental Chemistry, 2020, (7): 1860-1871. doi: 10.7524/j.issn.0254-6108.2019050905
Citation: ZHANG Ming, WEN Hanhui, CAI Limei, LUO Jie, WANG Shuo, WANG Qiushuang, MU Guizhen, JIANG Huihao. Distribution characteristics of surface soil mercury in typical area of the Hanjiang Delta, Guangdong, China[J]. Environmental Chemistry, 2020, (7): 1860-1871. doi: 10.7524/j.issn.0254-6108.2019050905

韩江三角洲典型地区表层土壤汞的分布特征

    通讯作者: 蔡立梅, E-mail: clmktz88@yangtzeu.edu.cn
  • 基金项目:

    国家自然科学基金(41203061),教育部油气资源勘探技术重点实验室开放基金(K2018-19),湖北省自然科学基金(2015CFB603),湖北省教育厅科学技术研究重点项目(D20161301),有机地球化学国家重点实验室开放基金(OGL-201408)和长江大学大学生创新创业训练项目(2016006,2017223)资助.

Distribution characteristics of surface soil mercury in typical area of the Hanjiang Delta, Guangdong, China

    Corresponding author: CAI Limei, clmktz88@yangtzeu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(41203061),Open Fund Project of the Key Laboratory of Oil and Gas Resources Exploration Technology of the Ministry of Education(K2018-19),Natural Science Foundation of Hubei Province(2015CFB603),Science and Technology Research Key Project of Hubei Provincial Department of Education(D20161301),Open Fund of State Key Laboratory of Organic Geochemistry(OGL-201408)and Yangtze University College Student Innovation and Entrepreneurship Training Project(2016006,2017223).
  • 摘要: 以韩江三角洲典型地区揭阳市为研究区域,共采集表层土壤样本1330个,深层土壤样本331个,分析土壤汞含量,利用富集因子法研究揭阳市土壤汞的污染特征;利用半变异函数模型和局部Moran I法分析土壤汞的结构特征;利用GS+软件中的半变异函数模型和ArcGIS软件支持下的克里金插值法,得出研究区土壤汞含量分布图;探究不同成土母质和不同土地利用类型土壤汞含量的分布特征以及土壤理化性质对汞含量的影响.结果表明,揭阳市表层土壤汞的平均含量为0.079 mg·kg-1,变幅为0.008-1.053 mg·kg-1,高于研究区土壤背景值.研究区土壤汞污染不太严重,只有少部分地区处于中度污染或显著污染,无强烈污染和极强污染.研究区土壤汞含量存在强的空间相关性,说明汞具有强的迁移性.研究区土壤汞含量空间分布格局总体上呈现东北部最高并向四周逐渐降低的趋势.不同成土母质发育的土壤汞含量存在显著差异,成土母质为第四纪沉积物的土壤汞含量显著高于页岩、花岗岩、凝灰岩和粉砂岩发育的土壤.不同土地利用类型的土壤汞含量也存在显著差异,建设用地土壤汞含量显著高于未利用土地和农田用地.有机碳(SOC)和pH值均与土壤汞含量呈极显著正相关,且pH与汞的相关性(r=0.288,P<0.01)略强于SOC与汞的相关性(r=0.257,P<0.01).
  • 加载中
  • [1] WANG Z J, ZHANG G,CHEN X B, et al. Measurement and scaling of mercury on soil and air in a historical artisanal gold mining area in Northeastern China[J]. Chinese Geographical Science, 2019, 29(2):245-257.
    [2] 匡盈, 方凤满, 李养兵, 等. 铜陵新桥矿区周边农田土壤汞含量分布特征及其污染评价[J]. 应用生态学报, 2018, 29(8):2746-2752.

    KUANG Y, FANG F M, LI Y B, et al. Concentrations and pollution assessment of mercury in farmland soil of Xinqiao Mining Area of Tongling, Anhui, China[J]. Chinese Journal of Applied Ecology, 2018, 29(8):2746-2752(in Chinese).

    [3] 徐振涛, 梁鹏, 吴胜春, 等.不同生物质炭对土壤中有效态汞的影响及其吸附特征分析[J].环境化学, 2019, 38(4):832-841.

    XU Z T, LIANG P, WU S C, et al. Effects of different biochar on the a vailable mercury in soil and characterization of Hg adsorption[J]. Environmental Chemistry, 2019, 38(4):832-841(in Chinese).

    [4] ZHOU Y T, AAMIR M, LIU K, et al. Status of mercury accumulation in agricultural soil across China:Spatial distribution, temporal trend, influencing factor and risk assessment[J].Environmental Pollution, 2018(8), 240:116-124.
    [5] 吴飞, 王训, 罗辑, 等.青藏高原林线森林汞的空间分布格局及对大气环境汞污染的指示[J].环境化学, 2019, 38(7):1619-1627.

    WU F, WANG X, LUO J, et al. Spatial distribution of total mercury in timberline forest of tibetan plateau regions and its implications of atmos-pheric mercury pollution[J]. Environmental Chemistry, 2019, 38(7):1619-1627(in Chinese).

    [6] 孟其义, 钱晓莉, 陈淼, 等. 稻田生态系统汞的生物地球化学研究进展[J]. 生态学杂志, 2018, 37(5):1556-1573.

    MENG Q Y, QIAN X L, CHEN M, et al. Biogeochemical cycle of mercury in rice paddy ecosystem:A critical review[J]. Chinese Journal of Ecology, 2018, 37(5):1556-1573(in Chinese).

    [7] 罗优, 陆宇超, 杨兰, 等. 黔东南州农田土壤重金属污染的评价[J].微量元素与健康研究, 2019, 36(4):58-60.

    LUO Y, LU Y C, YANG L, et al. Evaluation of heavy metal pollution in farmland in Qiandongnan Prefecture[J]. Studies of Trace Elements and Health, 2019, 36(4):58-60(in Chinese).

    [8] 徐福银, 胡艳燕, 包兵, 等. 重庆市不同功能区绿地土壤Hg分布特征及其污染评价[J]. 土壤通报, 2015, 46(5):1253-1258.

    XU F Y, HU H Y, BAO B, et al. Distribution characters and pollution evaluation of Hg in urban soil of different functional area in Chongqing[J]. Chinese Journal of Soil Science, 2015, 46(5):1253-1258(in Chinese).

    [9] 马永鹏, 母佰龙, 马云霞, 等.郑州市土壤与绿色植物中汞的分布特征[J].中国环境监测, 2019, 35(2):77-82

    MA Y P, MU B L, MA Y X, et al. Concentration and distribution of mercury in soil and plant leaves in Zhengzhou City[J]. Environmental Monitoring in China, 2019, 35(2):77-82(in Chinese).

    [10] 胡嘉琪, 张刚, 史欣, 等. 东新开河小流域土壤汞空间分布特征及风险评价研究[J].环境科学与管理, 2019, 44(3):181-185.

    HU J Q, ZHANG G, SHI X, et al. Spatial distribution characteristics and risk assessment of soil mercury in Donginkai Small Watershed[J]. Environment Science and Management, 2019, 44(3):181-185(in Chinese).

    [11] 江东鹏, 张宝春. 粤东揭阳市环境污染控制对策研究[J]. 环境科学与管理, 2010, 35(10):43-45.

    JIANG D P, ZHANG B C. Evironmental pollution control countermeasure research in Jieyang City, Eastern Guangdong[J]. Environment Science and Management, 2010, 35(10):43-45(in Chinese).

    [12] 马宏宏. 湖北恩施土地质量地球化学评价技术方法研究[D]. 北京:中国地质大学, 2018. MA H H. Study on the geochemistry evaluation method of land quality in the typical area of Enshi[D]. Beijing:China University of Geosciences, 2018(in Chinese).
    [13] 刘焕, 胡友彪, 郑永红, 等. 煤矸石充填复垦区土壤重金属污染研究综述[J]. 广州化工, 2018, 46(19):14-16

    , 55. LIU H, HU Y B, ZHENG Y H, et al. Research summary on soil heavy metal pollution in coal gangue filling reclaimed area[J]. Guangzhou Chemical Industry, 2018, 46(19):14-16, 55(in Chinese).

    [14] HASANA B, KABIR S, SELIM REZA H M, et al. Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary-Kumira), Chittagong, Bangladesh[J]. Journal of Geochemical Exploration, 2013, 125(1):130-137.
    [15] FANG G C, WU Y S, CHANG S Y, et al. Size distributions of ambient air particles and enrichment factor analyses of metallic elements at Taichung Harbor near the Taiwan Strait[J]. Atmospheric Research, 2006, 81(4):320-333.
    [16] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6):611-627.
    [17] 李勇, 周永章, 张澄博, 等. 基于局部Moran's I和GIS的珠江三角洲肝癌高发区蔬菜土壤中Ni、Cr的空间热点分析[J]. 环境科学, 2010, 31(6):1617-1623.

    LI Y, ZHOU Y Z, ZHANG D B, et al. Application of local Moran's I and GIS to identify hotspots of Ni,Cr of vegetable soils in high-incidence area of liver cancer from the Pearl River Delta,South China[J]. Environmental Science, 2010, 31(6):1617-1623(in Chinese).

    [18] 祝玉杰, 张毅强, 刘明, 等. 西藏土壤汞的分布特征及污染评价[J]. 生态环境学报, 2014(9):1487-1491. ZHU Y J, ZHANG Y Q, LIU M, et al. Distribution and pollution assessment of the mercury in soils of Tibet[J]. Ecology and Environmental Sciences, 2014

    (9):1487-1491(in Chinese).

    [19] 熊明辉, 黎小军, 钟炜. 新余市土壤汞现状分析[J]. 河南农业科学, 2009, 38(3):52-55.

    XIONG M H, LI X M, ZHONG W. Analysis of mercury contention in soil of Xinyu City[J]. Journal of Henan Agricultural Sciences, 2009, 38(3):52-55(in Chinese).

    [20] 张慧, 郑志志, 马鑫鹏, 等. 哈尔滨市土壤表层重金属污染特征及来源辨析[J]. 环境科学研究, 2017, 30(10):1597-1606.

    [ZHANG H, ZHENG Z Z, MA X P, et al. Sources and pollution characteristics of heavy metals in surface soils of Harbin City[J]. Research of Environmental Sciences, 2017, 30(10):1597-1606(in Chinese).

    [21] 尹伟, 卢瑛, 李军辉, 等. 广州城市土壤汞的分布特征及污染评价[J]. 土壤通报, 2009, 40(5):1185-1188.

    YIN W, LU Y, LI J H, et al. Distribution characteristics and pollution assessment of mercury in urban soils of Guangzhou[J]. Chinese Journal of Soil Science, 2009, 40(5):1185-1188(in Chinese).

    [22] 钱建平, 张力, 刘辉利. 桂林市及近郊土壤汞的分布和污染研究[J]. 地球化学, 2000, 29(1):94-94.

    QIAN J P, ZHANG L, LIU H L. Soil mercury distribution and pollution in urban and suburbs of Guilin[J]. Geochimica, 2000, 29(1):94-94(in Chinese).

    [23]
    [24] 生态环境部. 土壤环境质量标准建设用地土壤污染风险管控标准(试行)GB36600-2018[S]. 北京:中国环境科学出版社, 2018. Department of Ecological Environment. Soil environmental quality standards soil pollution risk control standard for construction land (trial) GB36600-2018[S]. Beijing:China Environmental Science Press, 2018

    (in Chinese).

    [25] 生态环境部. 土壤环境质量标准农用地土壤污染风险管控标准(试行)GB15618-2018[S]. 北京:中国环境科学出版社, 2018. Department of Ecological Environment. Soil environmental quality standards Soil pollution risk control standard for agricultural land (trial). GB15618-2018[S]. Beijing:China Environmental Science Press, 2018

    (in Chinese).

    [26] 国家环境保护局. 土壤环境质量标准GB15618-1995[S]. 北京:中国环境科学出版社, 1995. National Environmental Protection Agency. Soil environmental quality standards GB15618-1995[S]. Beijing:China Environmental Science Press, 2018

    (in Chinese).

    [27] 顾思博, 周金龙, 曾妍妍, 等. 新疆民丰县农田土壤重金属污染特征与生态风险评价[J].干旱区资源与环境,2019,33(12):90-95.

    GU S B, ZHOU J L, ZENG Y Y, et al. Characteristics and ecological risk assessment of heavy metal pollution in farmland soil in Minfeng county of Xinjiang[J]. Journal of Arid Land Resources and Environment, 2019, 33(12):90-95(in Chinese).

    [28] 王燕云, 林承奇, 黄华斌, 等.福建九龙江流域水稻土重金属污染评价及生态风险[J].环境化学, 2018, 37(12):2800-2808.

    WANG Y Y, LIN C Q, HUANG H B, et al. Pollution assessment and ecological risk of heavy metals in the paddy soils of Jiulong River basin[J]. Environmental Chemistry,2018,37(12):2800-2808(in Chinese).

    [29] 蔡立梅, 黄兰椿, 周永章, 等. 珠江三角洲典型区农业土壤铬的空间结构及分布特征[J]. 农业环境科学学报, 2009, 28(1):60-65.

    CAI L M, HUANG L C, ZHOU Y Z, et al. The spatial structure and distribution of Cr contents in agricultural soils in a typical area of the Pearl River Delta, China[J]. Journal of Agro-Environment Science, 2009, 28(1):60-65(in Chinese).

    [30] CANBARDELLA C A, MOORMAN T B, NOVAK J M, et al. Field-scale variability of soil properties in central iowa soils[J]. Soil Science Society of America Journal, 1994, 58(5):1501-1511.
    [31] 李秋萍, 李长建, 肖小勇. 中国农业碳排放的空间效应研究[J]. 干旱区资源与环境, 2015, 29(4):30-35.

    LI Q P, LI C J, XIAO X Y. The spatial effects of agricultural carbon emissions in China-Based on spatial durbin model[J]. Journal of Arid Land Resources and Environment, 2015, 29(4):30-35(in Chinese).

    [32] 张慧, 郑志志, 杨欢, 等. 基于多元统计和地统计的肇源县表层土壤重金属来源辨析[J].土壤, 2017, 49(4):819-827.

    ZHANG H, ZHENG Z Z, YANG H, et al. Discrimination of heavy metal sources in topsoil in Zhaoyuan County bed on multivariate statistics and geostatistical[J]. Soils,2017,49(4):819-827(in Chinese).

    [33] 何腾兵, 董玲玲, 刘元生, 等. 贵阳市乌当区不同母质发育的土壤理化性质和重金属含量差异研究[J]. 水土保持学报, 2006,20(6):157-162.

    HE T B, DONG L L, LIU Y S, et al. Change of physical-chemical properties and heavy mental element in soil from different parent material/rock[J]. Journal of Soil and Water Conservation, 2006,20(6):157-162(in Chinese).

    [34] 徐夕博, 吕建树, 徐汝汝. 山东省沂源县土壤重金属来源分布及风险评价[J].农业工程学报, 2018, 34(9):216-223.

    XU X B, LV J S, XU R R. Source spatial distribution and risk assessment of heavy metals in Yiyuan County of Shandong Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9):216-223(in Chinese).

    [35] 聂超甲, 刘慧琳, 杨雪玲, 等.土壤汞含量分布特征与影响因素研究[J].安徽工程大学学报, 2019, 34(1):1-7

    , 20. NEI C J, LIU H L, YANG X L, et al. Distribution characteristics and affecting factors of Hg content in soil[J]. Journal of An hui Polytechnic University, 2019, 34(1):1-7, 20(in Chinese).

    [36] WANG L, ZHU L, YAN B. Effect of pH and dissolved organic matters on absorption and desorption of Hg in alkanline-alkali soil[J]. Environmental Engineering, 2014, 32(5):160-164.
    [37] 祝惠,阎百兴,张丰松,等. 粒级、pH和有机质对汞在松花江沉积物表面吸附-解吸的影响[J].环境科学,2010,31(10):2315-2320.

    ZHU H, YAN B X, ZHANG F S, et al. Effects of particle-sizes, pH and organic matter on adsorption and desorption of mercury to sediments in the Songhua River[J]. Environmental Science, 2010, 31(10):2315-2320(in Chinese).

    [38] 田恬. 土壤中水溶盐和重金属的垂向分布及吸附-解吸特征研究[D].西安:长安大学, 2016. TIAN T. The characteristics study on vertical distribution and adsorption-desorption of water-soluble salts and heavy metals in soil[D].Xi'an:Chang'an University, 2016.
  • 加载中
计量
  • 文章访问数:  2427
  • HTML全文浏览数:  2427
  • PDF下载数:  36
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-09

韩江三角洲典型地区表层土壤汞的分布特征

    通讯作者: 蔡立梅, E-mail: clmktz88@yangtzeu.edu.cn
  • 1. 长江大学油气资源与勘探技术教育部重点实验室, 武汉, 430100;
  • 2. 长江大学资源与环境学院, 武汉, 430100;
  • 3. 中国科学院广州地球化学研究所矿物学与成矿学重点实验室, 广州, 510000;
  • 4. 广东省有色金属地质局940队, 清远, 511500
基金项目:

国家自然科学基金(41203061),教育部油气资源勘探技术重点实验室开放基金(K2018-19),湖北省自然科学基金(2015CFB603),湖北省教育厅科学技术研究重点项目(D20161301),有机地球化学国家重点实验室开放基金(OGL-201408)和长江大学大学生创新创业训练项目(2016006,2017223)资助.

摘要: 以韩江三角洲典型地区揭阳市为研究区域,共采集表层土壤样本1330个,深层土壤样本331个,分析土壤汞含量,利用富集因子法研究揭阳市土壤汞的污染特征;利用半变异函数模型和局部Moran I法分析土壤汞的结构特征;利用GS+软件中的半变异函数模型和ArcGIS软件支持下的克里金插值法,得出研究区土壤汞含量分布图;探究不同成土母质和不同土地利用类型土壤汞含量的分布特征以及土壤理化性质对汞含量的影响.结果表明,揭阳市表层土壤汞的平均含量为0.079 mg·kg-1,变幅为0.008-1.053 mg·kg-1,高于研究区土壤背景值.研究区土壤汞污染不太严重,只有少部分地区处于中度污染或显著污染,无强烈污染和极强污染.研究区土壤汞含量存在强的空间相关性,说明汞具有强的迁移性.研究区土壤汞含量空间分布格局总体上呈现东北部最高并向四周逐渐降低的趋势.不同成土母质发育的土壤汞含量存在显著差异,成土母质为第四纪沉积物的土壤汞含量显著高于页岩、花岗岩、凝灰岩和粉砂岩发育的土壤.不同土地利用类型的土壤汞含量也存在显著差异,建设用地土壤汞含量显著高于未利用土地和农田用地.有机碳(SOC)和pH值均与土壤汞含量呈极显著正相关,且pH与汞的相关性(r=0.288,P<0.01)略强于SOC与汞的相关性(r=0.257,P<0.01).

English Abstract

参考文献 (38)

目录

/

返回文章
返回