喀斯特山地Ni-Mo废弃矿区周围镉污染及农作物富集特征
Cadmium pollution and Bioconcentration characteristic in crops around the abandon Ni-Mo mining area in the karst mountainous
-
摘要: 为研究典型喀斯特山地贵金属矿区耕地土壤重金属镉污染,及上附农作物的富集特征.选取遵义某Ni-Mo矿区为研究对象,采集了周边耕地土壤及农作物样品.采用ICP-MS检测其中Cd的含量,利用改进型连续提取法分步提取重金属形态,并评价土壤污染和农作物的富集水平.结果显示,研究区土壤Cd的平均含量为1.68 mg·kg-1,且在旱地和水田土壤中含量分别为1.57 mg·kg-1和2.16 mg·kg-1.残渣态是主要的存在形式,水田土壤酸溶态高于旱地.农作物中Cd的含量范围为0.022-1.276 mg·kg-1,其含量变异系数在0.19-0.73之间,属中高度变异.评价结果表明研究区耕地土壤普遍存在Cd的污染,不同耕地使用方式影响农作物对Cd积累.6种农作物对Cd的生物富集系数都小于1,其中主食类农作物的生物富集作用小于副食类;此外Cd在农作物辣椒中存在富集现象,在水稻中程度较低.Abstract: This work was trying to study the contamination of Cd in cultivated land soils and their enrichment characteristics by crops around a precious metals mining in typical karst mountainous area. An abandon Ni-Mo mining in Zunyi district was selected as research objective, and soil samples were collected from dry land and paddy field in study region. Simultaneity, crops samples were collected as well. ICP-MS was applied to test the content of Cd in samples, and speciation of heavy metals was analyzed via an improved continuous extraction method. Soil pollution level and bioconcentration degree were discussed. The results show that the average content of Cd in soils was 1.68 mg·kg-1, and the mean content in dry land and paddy field were 1.57 mg·kg-1 and 2.16 mg·kg-1, respectively. Residual form is the dominate form of Cd, and the acid-soluble fraction in paddy field was higher than that in dry land. The average content of Cd in crops were 0.022-1.276 mg·kg-1 and the coefficient of variation are between 0.19 and 0.73, it belonging to moderate to highly variable. The studied area was polluted by Cd universally, and discrepancies were observed between the accumulating characteristics of Cd in dry land and paddy field. The bioconcentration coefficient of Cd in six studied crops were less 1, and enrichment capacity of staple food crops was lower than that of non-stable food crops. Cd were tend to accumulated in pepper, and rice showed the lowest accumulating capacity among studied crops to Cd heavy metals.
-
Key words:
- Ni-Mo mining area /
- cadmium (Cd) /
- soil pollution /
- crops enrichment /
- karst mountains /
- heavy metal
-
[1] 何霄嘉, 王磊, 柯兵, 等. 中国喀斯特生态保护与修复研究进展[J]. 生态学报, 2019, 39(18):6577-6585. HE X J, WANG L, KE B, et al. Progress on ecological conservation and restoration for China Karst[J]. Acta Ecologica Sinica, 2019, 39(18):6577-6585(in Chinese).
[2] WANG H, GAO J B, HOU W J. Quantitative attribution analysis of soil erosion in different geomorphological types in Karst area:Based on the geodetector method[J]. Journal of Geographical Sciences,2019,29(2):271-286. [3] 李瑞玲, 王世杰, 熊康宁, 等. 贵州省岩溶地区坡度与土地石漠化空间相关分析[J]. 水土保持通报, 2006, 26(4):82-86. LI R L, WANG S J, XIONG K N, et al. Correlation between rocky desertification and slope degree in karst area of Guizhou[J]. Bulletin of Soil and Water Conservation, 2006,26(4):82-86(in Chinese).
[4] 刘梁美子, 占车生, 胡实, 等. 黔桂喀斯特山区植被变化及其地形效应[J]. 地理研究, 2018,37(12):2433-2446. LIU L M Z, ZHAN C S, HU S, et al. Vegetation change and its topographic effects in the karst mountainous areas of Guizhou and Guangxi[J]. Geographical Research, 2018,37(12):2433-2446(in Chinese).
[5] 余昌训, 彭渤, 唐晓燕, 等. 黑色页岩与土壤重金属污染[J]. 矿物岩石地球化学通报, 2018,27(2):137-145. YU C X, PENG B, TANG X Y, et al. The black shale and relative heavy metal contamination of soils derived from the black shale[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018,27(2):137-145(in Chinese).
[6] 朱建明, Johnson Thomas, 罗泰义, 等. 贵州遵义牛蹄塘组黑色岩系的硒同位素变化及其环境指示初探[J]. 岩石矿物学杂志,2008,27(4):361-366. ZHU J M, THOMAS J, LUO T Y, et al. A tentative discussion on the variation of selenium isotopes in black shale of Niutitang Formation, Zunyi, Guizhou Province, and its implications for depositional environment[J]. Acta Petrologica Et Mineralogica, 2008,27(4):361-366(in Chinese).
[7] 罗泰义, 张欢, 李晓彪, 等. 遵义牛蹄塘组黑色岩系中多元素富集层的主要矿化特征[J]. 矿物学报,2003,23(4):296-302. LUO T Y, ZHANG H, LI X B, et al. Mineral ization chatacteristics of the multielement-rich strata in the Niutitang Formation black shale series, Zunyi, Guizhou, China[J]. Acta Mineralogica Sinica, 2003,23(4):296-302(in Chinese).
[8] 谭月, 张梅江. 对贵州寒武系牛蹄塘组黑色岩系中矿产资源保护与利用的调查[J]. 贵州大学学报,2009,26(6):56-58. TAN Y, ZHANG M J. Ponder on protection and use of mineral Resource in the Cambrian system Niutitang Group black rock in Guizhou[J]. Journal of Guizhou University (Natural Science),2009,26(6):56-58(in Chinese).
[9] 王兴富, 顾秉谦. 贵州地区下寒武统黑色岩系区"多金属"富集矿层分析及土壤重金属污染研究进展[J]. 贵州科学,2016,34(5):63-68. WANG X F, GU B Q. The study progress of polymetallic deposit formation types and soil heavy metal pollute in lower Cambrian black rocks of Guizhou[J]. Guizhou Science, 2016,34(5):63-68(in Chinese).
[10] TUTTLE M L W, BREIT G N, GOLDHABER M B. Weathering of the New Albany Shale, Kentucky:II. Redistribution of minor and trace elements[J]. Applied Geochemistry, 2009, 24, 1565-1578. [11] FANG W X, WU P, HUANG Z Y. Research on the eco-eochemical effects of black shales in Pingli County, Shaanxi[J]. Chinese Journal of Geochemistry, 2001, 20(4):368-373. [12] LIAO C J, YUE Y M, WANG K L, et al. Ecological restoration enhances ecosystem health in the karst regions of southwest China[J]. Ecological Indicators, 2018, 90:416-425. [13] ZHANG M Y, WANG K L, LIU H Y, et al. Effect of ecological engineering projects on ecosystem services in a karst region:A case study of northwest Guangxi, China[J]. Journal of Cleaner Production, 2018, 183:831-842. [14] PRUVOT C, DOUAY F, FOURRIER H, et al. Heavy metals in soil, crops and grass as a source of human exposure in the former Mining Areas (6 pp)[J]. Journal of Soils and Sediments, 2006, 6(4):215-220. [15] LIM H S, LEE J S, CHON H T, et al. Heavy metal contamination and health risk assessment in the vicinity of the abandoned songcheon Au, Agmine in Korea[J]. Journal of Geochemical Exploration, 2008, 96(2/3):223-230. [16] 张庆华, 张伦尉, 杨涛, 等. 贵州遵义地区黑色岩系多金属矿层研究进展[J]. 矿产勘查,2012,3(5):583-588. ZHANG Q H, ZHANG L W, YANG T, et al. Research on ore-bearing polymetallic strata of black shale series in Zunyi, Guizhou[J]. Mineral Exploration, 2012,3(5):583-588(in Chinese).
[17] PAŠAVA J, KŘÍBEK B, ŽÁK K, et al. Environmental impacts of mining of Ni-Mo black shale-hosted deposits in the Zunyi region, Southern China:Preliminary results of the study of toxic metals in the system rock-soil-plant[J]. Bulletin of Geosciences, 2003, 78(3):251-260. [18] 樊正烈. 贵州遵义地区表层土壤微量元素均匀化现象及其农业地质环境效应[J]. 安徽农业科学,2010,38(24):13172-13174. FAN Z L. Homogeneity phenomenon of trace elements in the surface soils in Zunyi area of Guizhou and its agro-ecological environment effect[J]. Journal of Anhui Agricultural Sciences,2010,38(24):13172-13174(in Chinese).
[19] 任海利, 高军波, 龙杰, 等. 贵州开阳地区富硒地层及风化土壤地球化学特征[J]. 地球与环境, 2013,40(2):161-170. REN H L, GAO J B, LONG J, et al. Geochemical characteristics of selenium-rich strata and weathered soil from Kaiyang County, Guizhou Province[J]. Earth and Environment, 2012,40(2):161-170(in Chinese).
[20] 金昭贵, 周明忠. 遵义松林Ni-Mo矿区耕地土壤铊污染及潜在生态风险初步评价[J]. 地球与环境,2013,41(3):274-280. JIN Z G, ZHOU M Z. Preliminary assessment on contamination and potential ecological risk of thallium in cultivated soils around the Ni-Mo mining area in Songli, Zunyi[J]. Earth and Environment, 2013,41(3):274-280(in Chinese).
[21] 张迪, 周明忠, 熊康宁, 等. 贵州遵义松林Ni-Mo多金属矿区土壤Ni污染及农作物健康风险评价[J]. 农业环境科学学报, 2019,38(2):356-365. ZHANG D, ZHOU M Z, XIONG K N, et al. Risk assessment of nickel in soils and crops around the Ni-Mo polymetallic mining area in Songlin, Zunyi, China[J]. Journal of Agro-Environment Science, 2019,38(2):356-365(in Chinese).
[22] 金昭贵, 周明忠. 遵义松林Ni-Mo矿区耕地土壤的镉砷污染及潜在生态风险评价[J]. 农业环境科学学报,2012,31(12):2367-2373. JIN Z G, ZHOU M Z. An assessment on contamination and potential ecological risk of cadmium and arsenic in the cultivated soils around the Ni-Mo mining area in Songli, Zunyi, China[J].Journal of Agro-Environment Science, 2012,31(12):2367-2373(in Chinese).
[23] OLAWOYIN R, OYEWOLE S A, GRAYSON R L. Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta[J]. Ecotoxicology and Environmental Safety, 2012, 85(Complete):120-130. [24] 曹人升, 范明毅, 黄先飞, 等. 金沙燃煤电厂周围土壤有机质与重金属分析[J]. 环境化学,2017,36(2):398-407. CAO R S, FAN M Y, HUANG X F, et al. Analysis of organic matter and heavy metals in soils around the coal-fired power plant in Jinsha[J]. Environment Chemistry, 2017,36(2):398-407(in Chinese).
[25] ZHANG X,SUN H,ZHANG Z,et al. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles[J]. Chemosphere, 2007, 67(1):160-166. [26] ZHONG W S, REN T, ZHAO L J. Determination of Pb (lead), Cd (cadmium), Cr (chromium), Cu (copper), and Ni (nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry[J]. Journal of Food & Drug Analysis, 2016, 24(1):46-55. [27] 胡继伟, 刘峰, 陈敬安, 等. 喀斯特深水湖泊富硒沉积物中Se的赋存特征[J]. 环境化学,2013,32(8):1448-1455. HU J W, LIU F, CHEN J A, et al. Assessment of selenium pollution in sediments from Hongfeng Lake, China[J]. Environment Chemistry, 2013,32(8):1448-1455(in Chinese).
[28] 王月香, 陈茂林. 污泥溶液的酸碱度对重金属Cr、Cd形态的影响[J]. 工业安全与环保,2012, 38(12):66-68. WANG Y X, CHEN M L. Influence of sludge on the transformation of Cr and Cd[J]. Industrial Safety and Environment Protection,2012, 38(12):66-68(in Chinese).
[29] WILDING L P. Spatial variability:Its documentation, accommodation, and implication to soil surveys[M]//Nielsen D R, Bouma J (Eds.). Soil spatial variability. Wageningen:PUDOC Publishers. 1985:166-194. [30] 尚梦佳, 周忠发, 王小宇, 等. 基于支持向量机的喀斯特山区土壤环境质量评价[J]. 中国岩溶, 2018, 37(4):575-583. SHANG M J, ZHOU Z F, WANG X Y,et al. Evaluation of soil environmental quality in karst mountain area based on support vector machine:A case study of a tea plantation in northern Guizhou[J]. Carsoligica Sinica, 2018, 37(4):575-583(in Chinese).
[31] 李娟娟, 马金涛, 楚秀娟, 等. 应用地积累指数法和富集因子法对铜矿区土壤重金属污染的安全评价[J]. 中国安全科学学报,2006,16(12):135-139. LI J J, MA J T, CHU X J, et al. Application of index of geo-accumulation and environment factor in safety assessment of heavy-metals contamination on soil of copper refining[J]. China Safety Science Journal,2006,16(12):135-139(in Chinese).
[32] 彭景, 李泽琴, 侯家渝. 地积累指数法及生态危害指数评价法在土壤重金属污染中的应用及探讨[J]. 广东微量元素科学,2007,14(8):13-17. PENG J, LI Z Q, HOU J Y. Application of the index of geo-accumulation index and ecological risk index to assess heavy pollution in soils[J]. Guangdong Trace Elements Science, 2007,14(8):13-17(in Chinese).
[33] [34] 刘春早, 黄益宗, 雷鸣, 等. 重金属污染评价方法(TCLP)评价资江流域土壤重金属生态风险[J]. 环境化学,2011,39(9):1582-1589. LIU C Z, HUANG Y Z, LEI M, et al. Assessment of ecological risk of heavy metal contaminated soil in the Zijiang River region by toxicity characteristic leaching procedure[J]. Environment Chemistry,2011,39(9):1582-1589(in Chinese).
[35] 徐燕, 李淑芹, 郭书还, 等. 土壤重金属污染评价方法的比较[J]. 安徽农业科学,2008,36(11):4615-4617. XU Y, LI S Q, GUO S H, et al. Comparison of assessment methods of heavy metal pollution in soil[J]. Journal of Anhui Agricultural Sciences,2008,36(11):4615-4617(in Chinese).
[36] JORFI S, MALEKI R, JAAFARZADEH N, et al. Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran[J]. Data in Brief, 2017,15:584-590. [37] BONANNO G, RACCUIA S A. Seagrass, halophila stipulacea:Capacity of accumulation and biomonitoring of trace elements[J]. Science of The Total Environment, 2018, 633:257-263. [38] 庞文品, 秦樊鑫, 吕亚超, 等. 贵州兴仁煤矿区农田土壤重金属化学形态及风险评估[J]. 应用生态学报, 2016, 27(5):1468-1478. PANG W P, QIN F X, LV Y C, et al. Chemical speciations of heavy metals and their risk assessment in agricultural soils in a coal mining area from Xingren County, Guizhou Province, China[J]. Chinese Journal of Applied Ecology,2016, 27(5):1468-1478(in Chinese).
[39] 中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990. China National Environmental Monitoring Centre. Chinese soil element background value[M]. Beijing:China Environmental Science Press, 1990(in Chinese). [40] 高兆慧, 魏怀建, 李玉成, 等. 不同植被下复垦土壤腐殖质与Cd形态的关系[J]. 水土保持通报, 2017, 37(5):103-109. GAO Z H, WEI H J, LI Y C, et al. Relationships between humus and cadmium speciation of reclaimed soil under various vegetation[J]. Bulletin of soil and water Conservation, 2017, 37(5):103-109(in Chinese).
[41] 迟荪琳, 徐卫红, 熊仕娟, 等. 不同镉水平下纳米沸石对土壤pH、CEC及Cd形态的影响[J]. 环境科学, 2017,38(4):1654-1663. CHI S L, XU W H, XIONG S J, et al. Effect on nano zeolites on pH, CEC in soil and Cd fractions in plant and soil at different cadmium levels[J]. Environmental Science,2017,38(4):1654-1663(in Chinese).
[42] GONZALEZ M J, RAMOSCL, HERNANDEZ L M. Distribution of trace metals in sediments and the relationship with their accumulation in earthworms[J]. International Journal of Environmental Analytical Chemistry, 1994, 57(2):135-150. [43] 冯艳红, 郑丽萍, 应蓉蓉, 等. 黔西北炼锌矿区土壤重金属形态分析及风险评价[J]. 生态与农村环境学报, 2017,33(2):142-149. FENG Y H, ZHENG L P, YING R R, et al. Forms of heavy metals in soils of zinc mining area in northwestern Guizhou Province and their environmental risk[J]. Journal of Ecology and Rural Environment, 2017,33(2):142-149(in Chinese).
[44] 王逸群, 许端平, 薛杨, 等. Pb和Cd赋存形态与土壤理化性质相关性研究[J]. 地球与环境, 2018,46(5):451-455. WANG Y Q, XU D P, XUE Y,et al. Correlation between fractionation content of Pb, Cd and physico-chemical propertis of contaminated in soils[J]. Earth and Environment,2018,46(5):451-455(in Chinese).
[45] 邵代兴, 周开芳, 刘红, 等. 遵义市耕地土壤的养分含量及其变化趋势[J]. 贵州农业科学, 2017,45(5):62-65. SHAO D X, ZHOU K F, LIU H, et al. Contents and change trends of soil nutrients in cultivated land in Zunyi City[J]. Guizhou Agricultural Sciences,2017,45(5):62-65(in Chinese).
[46] 覃朝科, 农泽喜, 黄伟, 等. 广西某铅锌矿区农田土壤重金属形态分布特征[J]. 安徽农业科学,2016,44(15):146-149. QIN C K, NONG Z X, HUANG W,et al. Distribution characteristic of heavy metal forms in farmland soil in a lead-zinc mining area in Guangxi[J]. Journal of Anhui Agricultural Sciences,2016,44(15):146-149(in Chinese).
计量
- 文章访问数: 2272
- HTML全文浏览数: 2272
- PDF下载数: 30
- 施引文献: 0