土壤汞生物可给性的影响因素研究——基于体外模拟(in vitro)法

郑顺安, 韩允垒, 刘代丽, 倪润祥, 吴泽嬴, 师荣光. 土壤汞生物可给性的影响因素研究——基于体外模拟(in vitro)法[J]. 环境化学, 2019, (12): 2665-2671. doi: 10.7524/j.issn.0254-6108.2019051304
引用本文: 郑顺安, 韩允垒, 刘代丽, 倪润祥, 吴泽嬴, 师荣光.

土壤汞生物可给性的影响因素研究——基于体外模拟(in vitro)法

[J]. 环境化学, 2019, (12): 2665-2671. doi: 10.7524/j.issn.0254-6108.2019051304
ZHENG Shunan, HAN Yunlei, LIU Daili, NI Runxiang, WU Zeying, SHI Rongguang. Influence of soil properties on the Hg bioaccessibility in polluted soils investigated by in vitro digestion approachaes[J]. Environmental Chemistry, 2019, (12): 2665-2671. doi: 10.7524/j.issn.0254-6108.2019051304
Citation: ZHENG Shunan, HAN Yunlei, LIU Daili, NI Runxiang, WU Zeying, SHI Rongguang.

Influence of soil properties on the Hg bioaccessibility in polluted soils investigated by in vitro digestion approachaes

[J]. Environmental Chemistry, 2019, (12): 2665-2671. doi: 10.7524/j.issn.0254-6108.2019051304

土壤汞生物可给性的影响因素研究——基于体外模拟(in vitro)法

    通讯作者: 师荣光, E-mail: shirongguang_aepi@126.com
  • 基金项目:

    国家重点研发计划(2017YFD0801401,2017YFD0801205)资助.

Influence of soil properties on the Hg bioaccessibility in polluted soils investigated by in vitro digestion approachaes

    Corresponding author: SHI Rongguang, shirongguang_aepi@126.com
  • Fund Project: Supported by the National Key Research and Development Plans(2017YFD0801401, 2017YFD0801205).
  • 摘要:

    选取22种典型土壤,应用2种in vitro(模拟体外试验)方法——SBET法(simple bioaccessibility extraction test,生物有效性简化提取法)和PBET法(physiologically-based extraction test,生物原理提取法),定量阐明土壤性质对Hg生物可给性的影响.结果表明:①SBET法中Hg的生物可给性为2.91%-35.65%,平均值为13.26%;PBET法中Hg的生物可给性为1.33%-8.69%,平均值为3.93%.所有土壤均表现为SBET法中Hg的生物可给性显著高于PBET法.②pH及有机质含量是SBET法和PBET法中决定Hg生物可给性的关键影响因子,分别可以解释67.8%和81.8%的Hg生物可给性的变化;但两种方法中二者的影响程度不同:SBET法中,土壤有机质含量的影响更大,PBET法中,则是pH的影响更大.研究结果表明,污染土壤中Hg的生物可给性可以根据土壤中Hg总量、pH和有机质含量进行预测.

  • 加载中
  • [1] LI P, FENG X B, QIU G L, et al. Mercury pollution in Asia:A review of the contaminated sites[J]. Journal of Hazardous Materials, 2009,168(2):591-601.
    [2] PAUSTENBACH D J, BRUCE G M, CHROSTOWSKI P. Current views on the oral bioavailability of inorganic mercury in soil:Implications for health risk assessments[J]. Risk Analysis, 2010,17(5):533-544.
    [3] SAFRUK A M, BERGER R G, JACKSON B J, et al. The bioaccessibility of soil-based mercury as determined by physiological based extraction tests and human biomonitoring in children[J]. Science of the Total Environment, 2015,518-519:545-553.
    [4] GUNEY M, WELFRINGER B, DE R C, et al. Children's exposure to mercury-contaminated soils:Exposure assessment and risk characterization[J]. Archives of Environmental Contamination & Toxicology, 2013,65(2):345-355.
    [5] NÃ SSLEIN F, FEICHT E A, SCHULTE-HOSTEDE S, et al. Exposure analysis of the inhabitants living in the neighbourhood of a mercury-contaminated industrial site[J]. Chemosphere, 1995,30(12):2241-2248.
    [6] 马世娜. 土壤中不同赋存形态汞的生物有效性研究[D]. 北京:北京化工大学, 2016. MA S N. Bioavailability of different forms of mercury in soil[D]. Beijing:Beijing University of Chemical Technology,2016(in Chinese).
    [7] 张敏英. 土壤中汞的赋存形态与其生物有效性的关系研究[D]. 北京:北京化工大学, 2014. ZHANG M Y. The study of correlation between mercury speciation and their bioavailability in soil[D]. Beijing:Beijing University of Chemical Technology,2016(in Chinese).
    [8] 张东平, 余应新, 张帆, 等. 环境污染物对人体生物有效性测定的胃肠模拟研究现状[J]. 科学通报, 2008,53(21):2537-2545.

    ZHANG D P, YU Y X, ZHANG F, et al. Current status of gastrointestinal simulation study on the determination of bioavailability of environmental pollutants to human body[J]. Chinese Science Bulletin. 2008,53(21):2537-2545(in Chinese).

    [9] SCHOOF R A, NIELSEN J B. Evaluation of methods for assessing the oral bioavailability of inorganic mercury in soil[J]. Risk Analysis, 2010,17(5):545-555.
    [10] SCHRODER L, BASTA N T, CASTEEL S W, et al. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils[J]. Journal of Environmental Quality, 2004,33(2):513-521.
    [11] OOMEN A G, HACK A, MINEKUS M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants.[J]. Environmental Science & Technology, 2002,36(15):3326-3334.
    [12] 郑顺安, 王飞, 李晓华,等. 应用in vitro法评估土壤性质对土壤中Pb的生物可给性的影响[J]. 环境科学研究. 2013, 26(8):851-857.

    ZHENG S A, WANG F, LI X H, et al. Application of in vitro digestion approach for estimating lead bioaccessibility in contaminated soils:Influence of soil properties[J]. Research of Environmental Sciences, 2013, 26(8):851-857(in Chinese).

    [13] INTAWONGSE M, DEAN J R. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil[J]. Environmental Pollution, 2008,152(1):60-72.
    [14] WELFRINGER B, ZAGURY G J. Evaluation of two in vitro protocols for determination of mercury bioaccessibility:Influence of mercury fractionation and soil properties.[J]. Journal of Environmental Quality, 2009,38(6):2237-2244.
    [15] DEAN J R. Heavy metal bioavailability and bioaccessibility in soil[J]. Methods in Molecular Biology, 2009,599:15-36.
    [16] DAVIS A, BLOOM N S, HEE S S Q. The environmental geochemistry and bioaccessibility of mercury in soils and sediments:A review[J]. Risk Analysis, 2010,17(5):557-569.
    [17] ZAGURY G J, BEDEAUX C, WELFRINGER B. Influence of mercury speciation and fractionation on bioaccessibility in soils[J]. Archives of Environmental Contamination & Toxicology, 2009,56(3):371-379.
    [18] BARNETT M O, TURNER R R. Bioaccessibility of mercury in Soils[J]. Journal of Soil Contamination, 2001,10(3):301-316.
    [19] SAFRUK A M, BERGER R G, JACKSON B J, et al. The bioaccessibility of soil-based mercury as determined by physiological based extraction tests and human biomonitoring in children[J]. Science of the Total Environment, 2015,518-519:545-553.
    [20] YIN Y J, ALLEN H E, LI Y, et al. Adsorption of mercury (II) by soil:Effects of pH, chloride, and organic matter[J]. Journal of Environmental Quality, 1996,25(4):837-844.
    [21] YANG Y K, ZHANG C, SHI X J, et al. Effect of organic matter and pH on mercury release from soils[J]. Journal of Environmental Sciences-China, 2007,19(11):1349-1354.
    [22] YANG J, MOSBY D E, CASTEEL S W, et al. In vitro lead bioaccessibility and phosphate leaching as affected by surface application of phosphoric acid in lead-contaminated soil[J]. Archives Of Environmental Contamination and Toxicology, 2002,43(4):399-405.
    [23] JUHASZ A L, SMITH E, WEBER J, et al. In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils[J]. Chemosphere, 2007,69(1):69-78.
    [24] TANG X Y, ZHU Y G, CUI Y S, et al. The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China[J]. Environment International, 2006,32(5):682-689.
    [25] FINŽGAR N, TLUSTOŠ P, LEŠTAN D. Relationship of soil properties to fractionation, bioavailability and mobility of lead and zinc in soil[J]. Plant Soil & Environment, 2007,53(5):225-238.
  • 加载中
计量
  • 文章访问数:  1894
  • HTML全文浏览数:  1894
  • PDF下载数:  69
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-13
  • 刊出日期:  2019-12-10

土壤汞生物可给性的影响因素研究——基于体外模拟(in vitro)法

    通讯作者: 师荣光, E-mail: shirongguang_aepi@126.com
  • 1. 农业农村部农业生态与资源保护总站, 北京, 100125;
  • 2. 农业农村部资源循环利用技术与模式重点实验室, 北京, 100125;
  • 3. 农业农村部环境保护科研监测所, 天津, 300191;
  • 4. 中国农学会, 北京, 100125
基金项目:

国家重点研发计划(2017YFD0801401,2017YFD0801205)资助.

摘要: 

选取22种典型土壤,应用2种in vitro(模拟体外试验)方法——SBET法(simple bioaccessibility extraction test,生物有效性简化提取法)和PBET法(physiologically-based extraction test,生物原理提取法),定量阐明土壤性质对Hg生物可给性的影响.结果表明:①SBET法中Hg的生物可给性为2.91%-35.65%,平均值为13.26%;PBET法中Hg的生物可给性为1.33%-8.69%,平均值为3.93%.所有土壤均表现为SBET法中Hg的生物可给性显著高于PBET法.②pH及有机质含量是SBET法和PBET法中决定Hg生物可给性的关键影响因子,分别可以解释67.8%和81.8%的Hg生物可给性的变化;但两种方法中二者的影响程度不同:SBET法中,土壤有机质含量的影响更大,PBET法中,则是pH的影响更大.研究结果表明,污染土壤中Hg的生物可给性可以根据土壤中Hg总量、pH和有机质含量进行预测.

English Abstract

参考文献 (25)

目录

/

返回文章
返回