氧化石墨烯表面吸附态Pb(Ⅱ)在弱碱性环境中的解吸附特征

谢晓丹, 张建锋, 刘振兴, 刘茵. 氧化石墨烯表面吸附态Pb(Ⅱ)在弱碱性环境中的解吸附特征[J]. 环境化学, 2019, (12): 2672-2681. doi: 10.7524/j.issn.0254-6108.2019010502
引用本文: 谢晓丹, 张建锋, 刘振兴, 刘茵.

氧化石墨烯表面吸附态Pb(Ⅱ)在弱碱性环境中的解吸附特征

[J]. 环境化学, 2019, (12): 2672-2681. doi: 10.7524/j.issn.0254-6108.2019010502
XIE Xiaodan, ZHANG Jianfeng, LIU Zhenxing, LIU Yin. Desorption of adsorbed Pb(Ⅱ) on graphene oxide under alkaline groundwater conditions[J]. Environmental Chemistry, 2019, (12): 2672-2681. doi: 10.7524/j.issn.0254-6108.2019010502
Citation: XIE Xiaodan, ZHANG Jianfeng, LIU Zhenxing, LIU Yin.

Desorption of adsorbed Pb(Ⅱ) on graphene oxide under alkaline groundwater conditions

[J]. Environmental Chemistry, 2019, (12): 2672-2681. doi: 10.7524/j.issn.0254-6108.2019010502

氧化石墨烯表面吸附态Pb(Ⅱ)在弱碱性环境中的解吸附特征

    通讯作者: 张建锋, E-mail: zhangjianfeng@xauat.edu.cn
  • 基金项目:

    国家重点研发计划项目(2017YFC0403403-3/01)资助.

Desorption of adsorbed Pb(Ⅱ) on graphene oxide under alkaline groundwater conditions

    Corresponding author: ZHANG Jianfeng, zhangjianfeng@xauat.edu.cn
  • Fund Project: Supported by National Key Research and Development Program of China(2017YFC0403403-3/01).
  • 摘要:

    基于氧化石墨烯(graphene oxide,GO)的材料构成特征及其环境应用,通过人工配制弱碱性(碳酸氢钠)地下水,研究GO表面含氧基团在碱度胁迫下的变化及吸附态Pb(Ⅱ)的解吸附特征.结合在弱碱性条件下释放Pb(Ⅱ)的存赋形态,讨论被附Pb(Ⅱ)的GO吸附剂的环境稳定性.结果表明,NaHCO3条件能诱发GO表面氧化碎片(oxidative debris,OD)的剥落,剥落过程在20 h后达到平衡;吸附Pb(Ⅱ)的GO-Pb进入人工配制弱碱性地下水环境后,表面吸附态Pb(Ⅱ)随OD的剥落,以OD-Pb(Ⅱ)络合物的形式进入水相,并保持稳定的分散状态.OD-Pb(Ⅱ)的粒径在10 nm左右,因此强化了Pb(Ⅱ)在地层中的迁移能力,进而加剧GO-Pb(Ⅱ)进入水环境后的二次污染风险.

  • 加载中
  • [1] 闫帅欣, 王方, 王中良, 等. 氧化石墨烯对水环境中金属离子的吸附作用研究进展[J]. 环境化学, 2018, 37(5):180-189.

    YAN S X, WANG F, WANG Z L, et al. Adsorption of metal ions to graphene oxide in aquatic environment[J]. Environmental Chemistry, 2018, 37(5):180-189(in Chinese).

    [2] 曹恩伟,王宾,王敏, 等. 再生铅企业土壤-地下水中重金属污染迁移特征[J]. 环境监控与预警, 2016, 8(5):54-58.

    CAO E W, WANG B, WANG M, et al. Migration characteristics of heavy metals pollution in soil and groundwater of regenerate lead indus[J]. 2016, 8(5):54-58(in Chinese).

    [3] MISRA R K, JAIN S K, KHATRI P K. Iminodiacetic acid functionalized cation exchange resin for adsorptive removal of Cr(VI), Cd(II), Ni(II) and Pb(Ⅱ) from their aqueous solutions[J]. Journal of hazardous materials, 2011, 185(2):1508-1512.
    [4] DHARNAIK A S, GHOSH P K. Hexavalent chromium[Cr(Ⅵ)] removal by the electrochemical ion-exchange process[J]. Environmental Technology, 2014, 35(18):2272-2279.
    [5] 邹文雅. 氧化石墨烯改性材料的制备及其对重金属离子的吸附应用研究[D]. 广州:华南理工大学, 2016. ZOU W Y. Preparation and application of graphene oxide modifed materials for adsorption of heavy metal Ions[D]. Guangzhou:South China University of Technology, 2016(in Chinese).
    [6] HUANG Z H, ZHENG X Y, LV W, et al. Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(12):7558-7562.
    [7] ZHAO G X, LI J X, REN X M, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental science & technology, 2011, 45(24):10454-10462.
    [8] 张建锋, 梁程, 车东昇, 等. 还原条件下氧化石墨烯对铅离子的吸附/解吸附性能[J]. 环境化学, 2016, 35(9):1935-1942.

    ZHANG J F, LIANG C, CHE D S, et al. Adsorption and desorption of lead on graphene oxide surface under reduction condition[J]. Environmental Chemistry, 2016, 35(9):1935-1942(in Chinese).

    [9] 沈倩, 张建锋, 孟晓光, 等. 纳米氧化石墨烯对水中锶的吸附特征[J]. 环境化学, 2014, 33(11):1923-1929.

    SHEN Q, ZHANG J F, MENG X G, et al. A study on nanometer oxide graphene's adsorption characteristics of strontium in water[J]. Environmental Chemistry, 2014, 33(11):1923-1929(in Chinese).

    [10] CHAUKE V P, MAITY A, CHETTY A. High-performance towards removal of toxic hexavalent chromium from aqueous solution using graphene oxide-alpha cyclodextrin-polypyrrole nanocomposites[J]. Journal of Molecular Liquids, 2015, 211(2939):71-77.
    [11] LIU X, WANG X, LI J, et al. Ozonated graphene oxides as high efficient sorbents for Sr(II) and U(VI) removal from aqueous solutions[J]. Science China Chemistry, 2016, 59(7):869-877.
    [12] CHEN X, CHEN B. Direct observation, molecular structure, and location of oxidation debris on graphene oxide nanosheets[J]. Environmental Science & Technology, 2016, 50(16):8568-8577.
    [13] 谢彬彬, 廖建波, 胡芸, 等. 腐殖酸对巯基功能化离子印迹聚合物吸附Cd2+的增效作用[J]. 环境化学, 2017, 36(6):1213-1225.

    XIE B B, LIAO J B, HU Y, et al. Enhanced adsorption of Cd2+ on ion-imprinted thiol-functionalized polymer by humic acid[J]. Environmental Chemistry, 2017, 36(6):1213-1225(in Chinese).

    [14] TANG W W, ZENG G M, GONG J L, et al. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials:A review[J]. Science of the Total Environment, 2014, 468-469:1014-1027.
    [15] CHEN C, ZHAO K, SHANG J, et al. Uranium (VI) transport in saturated heterogeneous media:Influence of kaolinite and humic acid[J]. Environmental pollution, 2018, 240:219-226.
    [16] JORDAN R N, YONGE D R, HATHHORN W E, et al. Enhanced mobility of Pb in the presence of dissolved natural organic matter[J]. Journal of Contaminant Hydrology, 1997, 29(1):59-80.
    [17] LIN Z. Secondary mineral phases of metallic lead in soils of shooting ranges from Örebro County, Sweden[J]. Environmental Geology, 1996, 27(4):370-375.
    [18] HUMMERS W S, OFFEMAN R E, et al. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
    [19] THOMAS H R, DAY S P, WOODRUFF W E, et al. Deoxygenation of graphene oxide:Reduction or Cleaning?[J]. Chemistry of Materials, 2013, 25(18):3580-3588.
    [20] LUO T, TIAN H, GUO Z, et al. Fate of arsenate adsorbed on nano-TiO2 in the presence of sulfate reducing bacteria[J]. Environmental science & technology, 2013, 47(19):10939-10946.
    [21] BISSESSUR R, SCULLY S F. Intercalation of solid polymer electrolytes into graphite oxide[J]. Solid State Ionics, 2007, 178(11):877-882.
    [22] ROURKE J P, PANDEY P A, MOORE J J, et al. The real graphene oxide revealed:Stripping the oxidative debris from the graphene-like sheets[J]. Angewandte Chemie International Edition, 2011, 50(14):3173-3177.
    [23] ZHANG J L, YANG H J, SHEN G X, et al. Reduction of graphene oxide via L-ascorbic acid[J]. Chemical Communications, 2010, 46(7):1112-1114.
    [24] SU C, ACIK M, TAKAI K, et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour[J]. Nature Communications, 2012, 3(4):1298-1316.
    [25] FARIA A F, MARTINEZ D S T, MORAES A C M, et al. Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles[J]. Chemistry of Materials, 2012, 24(24):4080-4087.
    [26] WANG Y, KURUNTHU D, SCOTT G W, et al. Fluorescence quenching in conjugated polymers blended with reduced graphitic oxide[J]. Journal of Physical Chemistry C, 2015, 114(9):4153-4159.
    [27] GUO Z, WANG S, WANG G, et al. Effect of oxidation debris on spectroscopic and macroscopic properties of graphene oxide[J]. Carbon, 2014, 76:203-211.
    [28] YURKINSKII V P, FIRSOVA E G, PETROVA N V. Complexation of lead(II) Ions with hydroxide ions in nitrate-chloride solutions[J]. Russian Journal of Applied Chemistry, 2005, 78(8):1370-1372.
    [29] BARBIN N M, KAZANTSEV G F, MOISEEV G K, et al. Lead recovery from PbO, PbCl2, PbS, PbSO4, and their mixtures in carbonate melts[J]. Inorganic Materials, 2002, 38(12):1216-1223.
    [30] PERERA W N, HEFTER G, SIPOS P M, et al. An investigation of the lead(II)-hydroxide system[J]. Inorganic Chemistry, 2001, 40(16):3974-3978.
    [31] 魏强, 刘凯, 苗志超, 等. 氢键复合物中间相行为的变温红外光谱研究[J]. 液晶与显示, 2009, 24(2):163-167.

    WEI Q, LIU K, MIAO Z C, et al. Study of the phase behavior of hydrogen-bonded complexes by temperature-dependent infrared spectroscopy[J]. Chinese Journal of Liquid Crystals and Displays, 2009, 24(2):163-167(in Chinese).

    [32] RODRIGUEZ-PASTOR I, RAMOS-FERNANDEZ G, VARELA-RIZO H, et al. Towards the understanding of the graphene oxide structure:How to control the formation of humic-and fulvic-like oxidized debris[J]. Carbon, 2015, 84(1):299-309.
  • 加载中
计量
  • 文章访问数:  1807
  • HTML全文浏览数:  1807
  • PDF下载数:  50
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-01-05
  • 刊出日期:  2019-12-10

氧化石墨烯表面吸附态Pb(Ⅱ)在弱碱性环境中的解吸附特征

    通讯作者: 张建锋, E-mail: zhangjianfeng@xauat.edu.cn
  • 1. 西安建筑科技大学, 陕西省环境工程重点实验室, 西安, 710055;
  • 2. 西安建筑科技大学, 西北水资源与环境生态教育部重点实验室, 西安, 710055;
  • 3. 西安建筑科技大学建筑设计研究院, 西安, 710055
基金项目:

国家重点研发计划项目(2017YFC0403403-3/01)资助.

摘要: 

基于氧化石墨烯(graphene oxide,GO)的材料构成特征及其环境应用,通过人工配制弱碱性(碳酸氢钠)地下水,研究GO表面含氧基团在碱度胁迫下的变化及吸附态Pb(Ⅱ)的解吸附特征.结合在弱碱性条件下释放Pb(Ⅱ)的存赋形态,讨论被附Pb(Ⅱ)的GO吸附剂的环境稳定性.结果表明,NaHCO3条件能诱发GO表面氧化碎片(oxidative debris,OD)的剥落,剥落过程在20 h后达到平衡;吸附Pb(Ⅱ)的GO-Pb进入人工配制弱碱性地下水环境后,表面吸附态Pb(Ⅱ)随OD的剥落,以OD-Pb(Ⅱ)络合物的形式进入水相,并保持稳定的分散状态.OD-Pb(Ⅱ)的粒径在10 nm左右,因此强化了Pb(Ⅱ)在地层中的迁移能力,进而加剧GO-Pb(Ⅱ)进入水环境后的二次污染风险.

English Abstract

参考文献 (32)

目录

/

返回文章
返回