整体式锰铈复合氧化物催化剂的二乙胺催化燃烧性能
Catalytic combustion of diethylamine by monolithic manganese bismuth complex oxides catalysts
-
摘要: 以MnO2、CeO2和铝胶为原料,通过研磨后制得MnO2-CeO2复合氧化物浆料.将MnO2-CeO2复合氧化物浆料涂覆到堇青石蜂窝陶瓷(ceramic honeycomb,CH)载体表面,得到MnO2-CeO2复合氧化物整体式催化剂,考察了催化剂的二乙胺催化氧化性能.发现复合氧化物催化剂的二乙胺氧化活性明显高于单组分催化剂,当MnO2-CeO2的质量比为8:1时,催化剂的活性最高(二乙胺的T98温度最低),并且生成NOx的选择性小于15%.X射线粉末衍射(XRD)表征表明,MnO2-CeO2复合氧化物催化剂主要以MnO2、CeO2物相存在.氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)结果表明,复合氧化物催化剂上每克MnO2耗氢量高于单组份催化剂,当MnO2-CeO2质量比为4:1与8:1时,耗氢量最大.适量CeO2的添加有利于促进催化剂中Mn4+、Ce3+的存在,和提高催化剂的还原性能,是提高催化剂活性的主要原因.反应后,催化剂表面Mn4+含量增加,说明反应气氛下有利于Mn4+的形成,有利于催化活性的稳定和提高.
-
关键词:
- 催化燃烧 /
- 整体式催化剂 /
- 二乙胺 /
- MnO2-CeO2复合氧化物 /
- 还原性
Abstract: A series of MnO2-CeO2 monolithic catalysts were prepared by coating the active MnO2 and CeO2 component on the cordierite honeycomb ceramic support with aluminum gel as the adhesive, and their activities for diethylamine catalytic combustion were investigated. It was found that composite oxides monolithic catalysts showed much higher catalytic activity than single-component catalysts for diethylamine catalytic combustion reaction. The MnO2-CeO2 catalyst with mass ratio 8:1 showed the highest activity and 15% selectivity of NOx, which gave the lowest T98 diethylamine oxidation temperature. The MnO2-CeO2 composite oxides catalysts mainly contained MnO2 and CeO2 phase according to X-ray powder diffraction (XRD) characterization. As shown in hydrogen temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) results, MnO2 on the composite oxides catalysts gave more hydrogen consumption than single component catalysts, especially for MnO2-CeO2 mass ratio 4:1 and 8:1 with the largest hydrogen consumption. The addition of proper amount of CeO2 was beneficial for the presence of Mn4+ and Ce3+ in the catalyst and improved its reduction performance, which enhanced catalytic activity. The formation of Mn4+ during reaction suggested the increase of its content on the catalyst surface after the reaction, which maybe benefit to the stability and activity of the catalyst.-
Key words:
- catalytic combustion /
- monolithic catalyst /
- diethylamine /
- MnO2-CeO2 composite oxides /
- reducibility
-
-
[1] 吕怡兵, 谭丽, 滕恩江, 等. 我国大气背景点挥发性有机污染物的浓度水平与组成特征[J]. 环境化学, 2013, 32(5):726-733. LV Y B, TAN L, TENG E J, et al.Concentration levels and composition characteristics of VOCs at the background locations in China[J]. Environmental Chemistry, 2013, 32(5):726-733(in Chinese).
[2] EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. Journal of Hazardous Materials, 2004, 109(1-3):113-139. [3] 王铁宇, 李奇锋, 吕永龙. 我国VOCs的排放特征及控制对策研究[J]. 环境科学, 2013, 34(12):4756-4763. WANG T Y, LI Q F, LV Y L. Characteristics and countermeasures of volatile organic compounds (VOCs) emission in China[J]. Environmental Science, 2013, 34(12):4756-4763(in Chinese).
[4] MAHBUB P, AYOKO G A, GOONETILLEKE A, et al. Analysis of the build-up of semi and non volatile organic compounds on urban roads[J]. Water Research, 2011, 45(9):2835-2844. [5] COGGON M M, VERES P R, YUAN B, et al. Emissions of nitrogen-containing organic compounds from the burning of herbaceous and arboraceous biomass:fuel composition dependence and the variability of commonly used nitrile tracers[J]. Geophysical Research Letters, 2016, 43(18):9903-9912. [6] MA M D, HUANG H, CHEN C W, et al. Highly active SBA-15-confined Pd catalyst with short rod-like micro-mesoporous hybrid nanostructure for n-butylamine low-temperature destruction[J]. Molecular Catalysis, 2018, 455:192-203. [7] HUANG Q Q, ZUO S F, ZHOU R X, et al. Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs[J]. Applied Catalysis B:Environmental, 2010, 95(3-4):327-334. [8] 钟依均, 刘泽菊, 朱波, 等. 含氮有机物在Pt/HM, Pd/HM和CuO/HM催化剂上的氧化降解[J]. 环境化学, 1997, 3(16):204-207. ZHONG Y J, LIU Z J, ZHU B,et al. Oxidation decomposition of nitrogencontaining compounds over Pt/HM,Pd/HM and CuO/HM catalysts[J]. Environmental Chemistry, 1997, 3(16):204-207(in Chinese).
[9] LIU Z M, ZHU J Z, LI J H, et al. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2014, 6(16):14500-14508. [10] YANG S S, HUANG Q Q, ZHOU R X. Influence of interactions between chromium and cerium on catalytic performances of CrOx-CeO2/Ti-PILC catalysts for deep oxidation of n-butylamine[J]. Chinese Science Bulletin, 2014, 59(31):3987-3992. [11] BONINGARI T, ETTIREDDY P R, SOMOGYVARI A, et al. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions[J]. Journal of Catalysis, 2015, 325:145-155. [12] 贾永芹, 张晓晶. MnOx催化剂用于甲苯催化氧化反应的研究[J]. 环境污染与防治, 2018, 40(5):518-520 , 526. JIA Y Q, ZHANG X J. Catalytic oxidation of toluene by MnOx catalysts[J]. Environmental Pollution & Control, 2018,40(5):518-520,526(in Chinese).
[13] GAO X, JIANG Y, ZHONG Y, et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials, 2010, 174(1-3):734-739. [14] LI W, ZHANG C, LI X, et al. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NO with NH3:Evaluation and characterization[J]. Chinese Journal of Catalysis, 2018, 39(10):1653-1663. [15] LIU L Z, ZHANG H B, JIA J P, et al. Direct molten polymerization synthesis of highly active samarium manganese perovskites with different morphologies for VOC removal[J]. Inorganic Chemistry, 2018, 57(14):8451-8457. [16] ZHOU X, LAI X, LIN T, et al. Preparation of a monolith MnOx-CeO2/La-Al2O3 catalyst and its properties for catalytic oxidation of toluene[J]. New Journal of Chemistry, 2018, 42(20):16875-16885. [17] LI L, LISHAN W, SIWEI P, et al. Effects of cerium on the selective catalytic reduction activity and structural properties of manganese oxides supported on Multi-walled carbon nanotubes catalysts[J]. Chinese Journal of Catalysis, 2013, 34:1087-1097. [18] XIE Y, LI C, ZHAO L, et al. Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke[J]. Applied Surface Science, 2015, 333:59-67. [19] 郭静, 李彩亭, 路培, 等. CeO2改性MnOx/Al2O3的低温SCR法脱硝性能及机制研究[J]. 环境科学, 2011, 32(8):2240-2246. GUO J, LI C T, LU P,et al.Research on SCR denitrification of MnOx/Al2O3 modified by CeO2 and Its mechanism at low temperature[J]. Environmental Science, 2011, 32(8):2240-2246(in Chinese).
[20] CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B:Environmental, 2018, 224:825-835. [21] MORALES M R, YESTE M P, VIDAL H, et al. Insights on the combustion mechanism of ethanol and n-hexane in honeycomb monolithic type catalysts:Influence of the amount and nature of Mn-Cu mixed oxide[J]. Fuel, 2017, 208:637-646. [22] WANG Z, QU Z P, QUAN X, et al. Selective catalytic oxidation of ammonia to nitrogen over CuO-CeO2 mixed oxides prepared by surfactant-templated method[J]. Applied Catalysis B:Environmental, 2013, 134-135:153-166. [23] ZHANG H, GU F N, LIU Q, et al. MnOx-CeO2 supported on a three-dimensional and networked SBA-15 monolith for NOx-assisted soot combustion[J]. RSC Advances, 2014,4:14879-14889. [24] LIAO Y N, FU M L, CHEN L M, et al. Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides[J]. Catalysis Today, 2013, 216:220-228. -

计量
- 文章访问数: 2767
- HTML全文浏览数: 2767
- PDF下载数: 64
- 施引文献: 0