磷胁迫对藻类生长代谢的影响及藻类对胁迫响应机制的研究进展

李璇, 周燕平, 夏琼琼, 代瑞华. 磷胁迫对藻类生长代谢的影响及藻类对胁迫响应机制的研究进展[J]. 环境化学, 2020, (8): 2074-2083. doi: 10.7524/j.issn.0254-6108.2019060401
引用本文: 李璇, 周燕平, 夏琼琼, 代瑞华. 磷胁迫对藻类生长代谢的影响及藻类对胁迫响应机制的研究进展[J]. 环境化学, 2020, (8): 2074-2083. doi: 10.7524/j.issn.0254-6108.2019060401
LI Xuan, ZHOU Yanping, XIA Qiongqiong, DAI Ruihua. The impacts of phosphorus stress on the growth and metabolism of algae and its response mechanism[J]. Environmental Chemistry, 2020, (8): 2074-2083. doi: 10.7524/j.issn.0254-6108.2019060401
Citation: LI Xuan, ZHOU Yanping, XIA Qiongqiong, DAI Ruihua. The impacts of phosphorus stress on the growth and metabolism of algae and its response mechanism[J]. Environmental Chemistry, 2020, (8): 2074-2083. doi: 10.7524/j.issn.0254-6108.2019060401

磷胁迫对藻类生长代谢的影响及藻类对胁迫响应机制的研究进展

    通讯作者: 代瑞华, E-mail: rhdai@fudan.edu.cn
  • 基金项目:

    国家自然科学基金(51678159)和城市污水能源资源开发及氮磷深度控制技术的集成研究与综合示范项目(2015ZX07306001)资助.

The impacts of phosphorus stress on the growth and metabolism of algae and its response mechanism

    Corresponding author: DAI Ruihua, rhdai@fudan.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(51678159) and the Project for Urban Sewage Energy and Resource Exploitation and the Integrated Research and Comprehensive Demonstration of Nitrogen and Phosphorus Deep Control Technology(2015ZX07306001).
  • 摘要: 磷是藻类所必需的营养元素之一,水体中的藻类通常可以直接利用溶解性磷酸盐,而水环境中的溶解性磷酸盐的浓度通常较低,无法满足藻类的生长需要,从而造成磷胁迫.近年来分子生物学水平的研究方法突飞猛进,通过转录组、蛋白组等组学分析藻类的磷胁迫研究越来越多.本文从生理学和分子生物学角度综述了磷胁迫对藻类的生长和代谢的影响,总结了藻类对磷胁迫的响应行为和环境适应机制,对于探究藻类生长代谢及磷利用的机理有一定的科学意义.
  • 加载中
  • [1] TYRRELL T. The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 1999, 400(6744):525-531.
    [2] BJERRUM C J, CANFIELD D E. Ocean productivity before about 1.9Gyr ago limited by phosphorus adsorption onto iron oxides[J]. Nature (London), 2002, 417(6885):159-162.
    [3] SMITH V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in Lake phytoplankton[J]. Science, 1983, 221(4611):669-671.
    [4] HECKY R E, KILHAM P. Nutrient limitation of phytoplankton in freshwater and marine environments:A review of recent evidence on the effects of enrichment[J]. Limnology and Oceanography, 1988, 33(4):796-822.
    [5] WILHELM S W, DEBRUYN J M, GILLOR O. Effect of phosphorus amendments on present day plankton communities in pelagic Lake Erie[J]. Aquatic Microbial Ecology, 2003, 32(3):275-285.
    [6] PETERS B R H. The relationship between chemically analyzed phosphorus fractions and bioavailable phosphorus[J]. Limnology and Oceanography, 1987, 32(5):1124-1137.
    [7] KOLOWITH L C, BENNER I R. Composition and cycling of marine organic phosphorus[J]. Limnology and Oceanography, 2001, 46(2):309-320.
    [8] TAKEDA E, TAKETANI Y, NASHIKI K, et al. A novel function of phosphate-mediated intracellular signal transduction pathways[J]. Advances in Enzyme Regulation, 2006, 46(1):154-161.
    [9] PAYTAN A, MCLAUGHLIN K. The oceanic phosphorus cycle[J]. Chemical Reviews, 2007, 107(2):563-576.
    [10] XIUXIU W, BANGQIN H, HUAN Z. Phosphorus deficiency affects multiple macromolecular biosynthesis pathways of Thalassiosira weissflogii[J]. Acta Oceanologica Sinica, 2014, 33(4):85-91.
    [11] DYHRMAN S, AMMERMAN J, VAN MOOY B. Microbes and the marine phosphorus cycle[J]. Oceanography, 2007, 20(2):110-116.
    [12] LIN X, ZHANG H, HUANG B, et al. Alkaline phosphatase gene sequence characteristics and transcriptional regulation by phosphate limitation in Karenia brevis (Dinophyceae)[J]. Harmful Algae, 2012, 17:14-24.
    [13] RUTTENBERG K C, DYHRMAN S T. Dissolved organic phosphorus production during simulated phytoplankton blooms in a coastal upwelling system[J]. Frontiers in Microbiology, 2012, 3:274.
    [14] LINJIAN O, XIAOYUN H, BANGQIN H, et al. Growth and competition for different forms of organic phosphorus by the dinoflagellate Prorocentrum donghaiense with the dinoflagellate Alexandrium catenella and the diatom Skeletonema costatum s.l[J]. Hydrobiologia, 2014, 754(1):29-41.
    [15] DYHRMAN S T, CHAPPEIL P D, HALEY S T, et al. Phosphonate utilization by the globally important marine diazotroph trichodesmium[J]. Nature, 2006, 439(7072):68-71.
    [16] LIN X, ZHANG H, HUANG B, et al. Alkaline phosphatase gene sequence and transcriptional regulation by phosphate limitation in Amphidinium Carterae (Dinophyceae)(1)[J]. J Phycol, 2011, 47(5):1110-1120.
    [17] SEBASTIAN M, AMMERMAN J W. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA[J]. ISME Journal, 2009, 3(5):563-572.
    [18] KAGEYAMA H, TRIPATHI K, RAI A K, et al. An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium[J]. Applied and Environmental Microbiology, 2011, 77(15):5178-5183.
    [19] DYHRMAN S T. Nutrients and their acquisition phosphorus physiology in microalgae[M]. The Physiology of Microalgae:Springer International Publishing, 2016.
    [20] MARCHETTI A, SCHRUTH D M, DURKIN C A, et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability[J]. Proceedings of the National Academy of Sciences, 2012, 109(6):E317-E325.
    [21] BAWA P, ZACKARIA S, VERMA M, et al. Integrative analysis of normal long intergenic non-coding RNAs in prostate cancer[J]. PLoS One, 2015, 10(5):e0122143.
    [22] TAYLOR F J R, HOPPENRATH M, SALDARRIAGA J F. Dinoflagellate diversity and distribution[J]. Biodiversity and Conservation, 2007, 17(2):407-418.
    [23] SHOGUCHI E, SHINZATO C, KAWASHIMA T, et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure[J]. Current Biology, 2013, 23(15):1399-1408.
    [24] COLLIER J L, GROSSMAN A R. Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942:Not all bleaching is the same[J]. Journal of Bacteriology, 1992, 174(14):4718-4726.
    [25] SAJEELA GHAFFAR R J S, ZAHIRUDDIN K. Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake[J]. Plos One, 2017, 12(3):e0174349.
    [26] MUHLROTH A, WINGE P, El ASSIMI A, et al. Mechanisms of phosphorus acquisition and lipid class remodeling under P limitation in a marine microalga[J]. Plant Physiology, 2017, 175(4):1543-1559.
    [27] HARKE M J, GOBLER C J. Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter[J]. Plos One, 2013, 8(7):e69834.
    [28] HARKE M J, JUHL A R, HALEY S T, et al. Conserved transcriptional responses to nutrient stress in bloom-forming algae[J]. Frontiers in Microbiology, 2017, 8:1279.
    [29] WANG Y, YU J, WANG P, et al. Response of energy microalgae Chlamydomonas reinhardtii to nitrogen and phosphorus stress[J]. Environmental Science and Pollution Research, 2018, 25(6):5762-5770.
    [30] SHENG L, ZHILING G, TAO L, et al. Photosynthetic efficiency, cell volume, and elemental stoichiometric ratios in Thalassirosira weissflogii under phosphorus limitation[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(5):1048-1056.
    [31] CHAO Z, SENJIE L, LIANGMIN H, et al. Suppression subtraction hybridization analysis revealed regulation of some cell cycle and toxin genes in Alexandrium catenella by phosphate limitation[J]. Harmful Algae, 2014, 39:26-39.
    [32] MARCUS Y, GUREVITZ M. Activation of cyanobacterial RuBP-carboxylase/oxygenase is facilitated by inorganic phosphate via two independent mechanisms[J]. FEBS Journal, 2010, 19(267):5995-6003.
    [33] 张树峰. 中国近海典型藻华种对环境中磷变化响应的转录组学研究[D].厦门:厦门大学,2016. SHUFENG Z. Transcriptomic analysis of typical algal bloom species in the coast of China sea reveals the response mechanisms to changing ambient phosphorus[D]. Xiamen:Xiamen University, 2016(in Chinese).
    [34] TEIKARI J, OSTERHOLM J, KOPF M, et al. Transcriptomic and proteomic profiling of Anabaena sp. Strain 90 under Inorganic phosphorus stress[J]. Applied and Environmental Microbiology, 2015, 81(15):5212-5222.
    [35] PIMENTEL J S, GIANI A. Microcystin production and regulation under nutrient stress conditions in toxic microcystis strains[J]. Applied and Environmental Microbiology, 2014, 80(18):5836-5843.
    [36] STEFFEN M M, DEARTH S P, DILL B D, et al. Nutrients drive transcriptional changes that maintain metabolic homeostasis but alter genome architecture in Microcystis[J]. ISME Journal, 2014, 8(10):2080-2092.
    [37] LUDWIG M, BRYANT D A. Acclimation of the global transcriptome of the cyanobacterium Synechococcus sp. Strain PCC 7002 to nutrient limitations and different nitrogen sources[J]. Frontiers in Microbiology, 2012, 3:145.
    [38] HARKE M J, GOBLER C J. Daily transcriptome changes reveal the role of nitrogen in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium, Microcystis aeruginosa[J]. BMC Genomics, 2015, 16(1):1068.
    [39] VANUCCI S, GUERRINI F, MILANDRI A, et al. Effects of different levels of N- and P-deficiency on cell yield, okadaic acid, DTX-1, protein and carbohydrate dynamics in the benthic dinoflagellate Prorocentrum lima[J]. Harmful Algae, 2010, 9(6):590-599.
    [40] KAMALANATHAN M, PIERANGELINI M, SHEARMAN L A, et al. Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii[J]. Journal of Applied Phycology, 2016, 28(3):1509-1520.
    [41] ORCHARD E D, WEBB E A, DYHRMAN S T. Molecular analysis of the phosphorus starvation response in Trichodesmium spp[J]. Environmental Microbiology, 2009, 11(9):2400-2411.
    [42] MARTINY A C, COLEMAN M L, CHISHOLM S W. Phosphate acquisition genes in Prochlorococcus ecotypes:Evidence for genome-wide adaptation[J]. Proceedings of the National Academy of Sciences, 2006, 103(33):12552-12557.
    [43] FENG T Y, YANG Z K, ZHENG J W, et al. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum[J]. Scientific Reports, 2015, 5:10373.
    [44] TETU S G, BRAHAMSHA B, JOHNSON D A, et al. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102[J]. ISME Journal, 2009, 3(7):835-849.
    [45] SU Z, OLMAN V, XU Y. Computational prediction of Pho regulons in cyanobacteria[J]. BMC Genomics, 2007, 8:156.
    [46] REISTETTER E N, KRUMHARDT K, CALLNAN K, et al. Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 II:Gene expression[J]. Environmental Microbiology, 2013, 15(7):2129-2143.
    [47] SCANLAN D J, OSTROWSKI M, MAZARD S, et al. Ecological genomics of marine picocyanobacteria[J]. Microbiology and Molecular Biology Reviews, 2009, 73(2):249-299.
    [48] FRISCHKORN K R, HARKE M J, GOBLER C J, et al. De novo assembly of Aureococcus anophagefferens transcriptomes reveals diverse responses to the low nutrient and low light conditions present during blooms[J]. Frontiers in Microbiology, 2014, 5:375.
    [49] 刘朝莹. 鱼腥藻FACHB709碱性磷酸酶基因无机磷饥饿应答调控反应[D]. 镇江:江苏大学,2012. CHAOYING L. The response of alkaline PhosPhatasegenes in the cyanobacterium Anabeanas P.EACHB 709 to inorganic phosphorus starvation[D]. Zhenjiang:Jiangsu University, 2012(in Chinese).
    [50] KATHURIA S, MARTINY A C. Prevalence of a calcium-based alkaline phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria[J]. Environmental Microbiology, 2011, 13(1):74-83.
    [51] YAMAGUCHI H, ARISAKA H, OTSUKA N, et al. Utilization of phosphate diesters by phosphodiesterase-producing marine diatoms[J]. Journal of Plankton Research, 2014, 36(1):281-285.
    [52] DYHEMAN S T, JENKINS B D, RYNEARSON T A, et al. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response[J]. Plos One, 2012, 7(3):e33768.
    [53] ALEXANDER H, JENKINS B D, RYNEARSON T A, et al. Metatranscriptome analyses indicate resource partitioning between diatoms in the field[J]. Proceedings of the National Academy of Sciences, 2015, 112(17):E2182-E2190.
    [54] DYHRMAN S T, HALEY S T, BIRKELAND S R, et al. Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore Emiliania huxleyi[J]. Applied Environmental Microbiololgy, 2006, 72(1):252-260.
    [55] WURCH L L, HALEY S T, ORCHARD E D, et al. Nutrient-regulated transcriptional responses in the brown tide-forming alga Aureococcus anophagefferens[J]. Environmental Microbiology, 2011, 13(2):468-481.
    [56] MARTINEZ A, OSBURNE M S, SHARMA A K, et al. Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301[J]. Environmental Microbiology, 2012, 14(6):1363-1377.
    [57] MARIA R G, LOSADA M, SERRANO A. Concurrent transcriptional activation of ppa and ppx genes by phosphate deprivation in the cyanobacterium Synechocystis sp. strain PCC 6803[J]. Biochemical and Biophysical Research Communications, 2003, 302(3):601-609.
    [58] MERCHANT S S, HELMANN J D. Elemental economy:Microbial strategies for optimizing growth in the face of nutrient limitation[J]. Advances in Microbial Physiology, 2012, 60:91-210.
    [59] VAN MOOY B A, FREDRICKS H F, PEDLER B E, et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity[J]. Nature, 2009, 458(7234):69-72.
    [60] WURCH L L, BERTRAND E M, SAITO M A, et al. Proteome changes driven by phosphorus deficiency and recovery in the brown tide-forming alga Aureococcus anophagefferens[J]. PLoS One, 2011, 6(12):e28949.
    [61] RIEKHOF W R, SEARS B B, BENNING C. Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii:Discovery of the betaine lipid synthase BTA1Cr[J]. Eukaryot Cell, 2005, 4(2):242-252.
    [62] MOORE L R, OSTROWSKI M, SCANLAN D J. Ecotypic variation in phosphorus acquisition mechanisms within marine picocyanobacteria[J]. Aquatic Microbial Ecology, 2005, 39(3):257-269.
    [63] SCANLAN D J, WILSON W H. Application of molecular techniques to addressing the role of P as a key effector in marine ecosystems[J]. Hydrobiologia, 1999, 401:149-175.
    [64] BESZTERI S, YANG I, JAECKISCH N, et al. Transcriptomic response of the toxic prymnesiophyte Prymnesium parvum (N. Carter) to phosphorus and nitrogen starvation[J]. Harmful Algae, 2012, 18:1-15.
    [65] SINHA R, PEARSON L A, DAVIS T W. Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities[J]. BMC Genomics, 2014, 15(1):83.
    [66] HARKE M J, BERRY D L, AMMERMAN J W, et al. Molecular response of the bloom-forming cyanobacterium, Microcystis aeruginosa, to phosphorus limitation[J]. Microbial Ecology, 2012, 63(1):188-198.
    [67] PITT F D, MAZARD S, HUMPHREYS L, et al. Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium[J]. Journal of Bacteriology, 2010, 192(13):3512-3523.
    [68] CHUNG C C, HWANG S P L, CHANG J. Identification of a high-affinity phosphate transporter gene in a Prasinophyte alga, Tetraselmis chui, and its expression under nutrient limitation[J]. Applied and Environmental Microbiology, 2003, 69(2):754-759.
    [69] FU M, SONG X, YU Z, et al. Responses of phosphate transporter gene and alkaline phosphatase in Thalassiosira pseudonana to phosphine[J]. PLoS One, 2013, 8(3):e59770.
  • 加载中
计量
  • 文章访问数:  4775
  • HTML全文浏览数:  4775
  • PDF下载数:  225
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-04

磷胁迫对藻类生长代谢的影响及藻类对胁迫响应机制的研究进展

    通讯作者: 代瑞华, E-mail: rhdai@fudan.edu.cn
  • 1. 复旦大学环境科学与工程系, 上海, 200433;
  • 2. 中国市政工程华北设计研究总院有限公司, 天津, 300074
基金项目:

国家自然科学基金(51678159)和城市污水能源资源开发及氮磷深度控制技术的集成研究与综合示范项目(2015ZX07306001)资助.

摘要: 磷是藻类所必需的营养元素之一,水体中的藻类通常可以直接利用溶解性磷酸盐,而水环境中的溶解性磷酸盐的浓度通常较低,无法满足藻类的生长需要,从而造成磷胁迫.近年来分子生物学水平的研究方法突飞猛进,通过转录组、蛋白组等组学分析藻类的磷胁迫研究越来越多.本文从生理学和分子生物学角度综述了磷胁迫对藻类的生长和代谢的影响,总结了藻类对磷胁迫的响应行为和环境适应机制,对于探究藻类生长代谢及磷利用的机理有一定的科学意义.

English Abstract

参考文献 (69)

目录

/

返回文章
返回