电晕放电等离子体对头孢唑林钠的降解

周日宇, 王彬, 董发勤, 谌书, 周明罗, 周世平, 张弘弢, 宋涛. 电晕放电等离子体对头孢唑林钠的降解[J]. 环境化学, 2019, (12): 2768-2779. doi: 10.7524/j.issn.0254-6108.2019061805
引用本文: 周日宇, 王彬, 董发勤, 谌书, 周明罗, 周世平, 张弘弢, 宋涛.

电晕放电等离子体对头孢唑林钠的降解

[J]. 环境化学, 2019, (12): 2768-2779. doi: 10.7524/j.issn.0254-6108.2019061805
ZHOU Riyu, WANG Bin, DONG Faqin, CHEN Shu, ZHOU Mingluo, ZHOU Shiping, ZHANG Hongtao, SONG Tao. Degradation of cefazolin sodium by corona discharge technology[J]. Environmental Chemistry, 2019, (12): 2768-2779. doi: 10.7524/j.issn.0254-6108.2019061805
Citation: ZHOU Riyu, WANG Bin, DONG Faqin, CHEN Shu, ZHOU Mingluo, ZHOU Shiping, ZHANG Hongtao, SONG Tao.

Degradation of cefazolin sodium by corona discharge technology

[J]. Environmental Chemistry, 2019, (12): 2768-2779. doi: 10.7524/j.issn.0254-6108.2019061805

电晕放电等离子体对头孢唑林钠的降解

    通讯作者: 王彬, E-mail: greenworldwb@swust.edu.cn
  • 基金项目:

    国家自然科学基金(41403081),四川省科技专项(2018SZDZX0020,2019YFH0175),四川省重点研发项目(2017SZ0178)和四川省教育厅重点项目(18ZA0500)资助.

Degradation of cefazolin sodium by corona discharge technology

    Corresponding author: WANG Bin, greenworldwb@swust.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41403081), the Sichuan Science and Technology Program (2018SZDZX0020, 2019YFH0175), Key Research and Development Program of Sichuan Province of China (2017SZ0178), the Scientific Research Fund of Sichuan Provincial Education Department (18ZA0500).
  • 摘要:

    为探究电晕放电等离子体对头孢唑林钠(cefazolin sodium,CFZ)的降解过程及产物,考察了不同因素对CFZ降解的影响,并结合光谱学及质谱分析推断出了CFZ降解过程中的部分中间产物及降解途径.结果表明,电晕放电等离子对CFZ有着良好的降解效能,且降解过程基本符合一级反应动力学,CFZ初始浓度、pH及载气条件均对反应存在影响.光谱学表明CFA被矿化NO3-、SO42-和CO32-等小分子无机离子.对CFZ的降解过程中降解副产物分析可知,电晕放电过程中CFZ主要有3种降解途径分别是噻二唑基团脱硫降解、头孢母核发生分子间内脂化和四氮唑开环矿化.

  • 加载中
  • [1] 郭睿,王山军,昌盛,等. 嘉兴市饮用水源及城市河网抗生素分布特征[J]. 环境化学,2016,35(9):1842-1852.

    GUO R, WANG S J, CHANG S, et al. Distribution characteristics of antibiotics in Jiaxing drinking water source and urban river[J]. Environmental Chemistry, 2016, 35(9):1842-1852(in Chinese).

    [2]
    [3] CHEN J B, SUN P Z, ZHANG Y L, et al. Multiple roles of Cu(II) in catalyzing hydrolysis and oxidation of β-Lactam antibiotics[J]. Environmental Science & Technology, 2016, 50(22):12156-12165.
    [4] 段平洲,黄鸽黎,胡翔. SnO2-Sb/碳纳米管复合电极的制备及催化降解低浓度头孢他啶[J]. 环境化学,2019,38(5):991-998.

    DUAN P Z, HUANG G L, HU X. Fabrication of SnO2-Sb/MWCNTs composite electrode and the anodic degradation of low concentration ceftazidime[J]. Environmental Chemistry, 2019, 38(5):991-998(in Chinese).

    [5] SUGIARTO A T, SATO M. Pulsed plasma processing of organic compounds in aqueous solution[J]. Thin Solid Films, 2001, 386(2):295-299.
    [6] 王保伟,王超,徐艳,等. 介质阻挡放电等离子体反应器降解盐酸四环素[J]. 化工学报,2018,69(4):1687-1694.

    WANG B W, WANG C, XU Y, et al. Degradation of tetracycline hydrochloride using dielectric barrier discharge plasma reactor[J]. CIESC Journal. 2018, 69(4):1687-1694(in Chinese).

    [7] MAROTTA E, CERIANI E, SCHIORLIN M, et al. Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor[J]. Water Research, 2012, 46(19):6239-6246.
    [8] CAO Y, QU G Z, LI T F, et al. Review on reactive species in water treatment using electrical discharge plasma:Formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10):10-26.
    [9] SAMARGHANDI M R, RAHMANI A, ASGARI G, et al. Photocatalytic removal of cefazolin from aqueous solution by AC prepared from mango seed plus ZnO under UV irradiation[J]. Global NEST Journal, 2018, 20(2):399-407.
    [10] SHANG, K F, LI, J, MORENT R. Hybrid electric discharge plasma technologies for water decontamination:A short review[J]. Plasma Science and Technology, 2019, 42(4):1-9.
    [11] GIUSEPPINA I, VINCENZO V, VINCENZO P. Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor[J]. Separation and Purification Technology, 2015, 215:155-162.
    [12] WANG, B W, XU M, CHI C M, et al. Degradation of methyl orange using dielectric barrier discharge water falling film reactor[J]. Journal of Advanced Oxidation Technologies, 2017, 20(2):20170021.
    [13] INCE N H, TEZCALI-GÜYER G. Impacts of pH and molecular structure on ultrasonic degradation of azo dyes[J]. Ultrasonics, 2004, 42(1):591-596.
    [14] WANG B W, DONG B, XU M, et al. Degradation of methylene blue using double-chamber dielectric barrier discharge reactor under different carrier gases[J]. Chemical Engineering Science, 2017, 168:90-100.
    [15] 商克峰,王肖静,鲁娜,等. 介质阻挡放电脱色酸性橙Ⅱ废水的动力学及脱色物化效应[J]. 高电压技术,2018,44(9):3009-3015.

    SHANG K F, WANG X J, LU N, et al. Kinetic and physiochemical effects of decolorization of AO7 dye wastewater by DBD[J]. High Voltage Engineering, 2018, 44(9):3009-3015(in Chinese).

    [16] RONG S P, SUN Y B. Wetted-wall corona discharge induced degradation of sulfadiazine antibiotics in aqueous solution[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(9):1351-1359.
    [17] 何东,孙亚兵,冯景伟,等. 电晕放电等离子体技术处理水中四环素的研究[J]. 环境科学学报,2014,34(9):2219-2225.

    HE D, SUN Y B, FENG J W, et al. Removal of aqueous tetracycline by corona discharge plasma[J]. Acta Scientiae Circumstantiae, 2014, 34(9):2219-2225(in Chinese).

    [18] 刘宏民. 实用有机光谱解析[M].郑州:郑州大学出版社,2008. LIU H M. Practical Analysis of Organic Spectra[M]. Zhengzhou:Zhengzhou University Press, 2008(in Chinese).
    [19] WEI M X, WANG B, CHEN S, et al. Study on spectral characteristics of dissolved organic matter collected from the decomposing process of crop straw in west sichuan plain[J]. Spectroscopy & Spectral Analysis, 2017, 37(9):2861-2868.
    [20] TIAN Y, WANG W D, ZOU W B, et al. Application of solid-state nmr to reveal structural differences in cefazolin sodium pentahydrate from different manufacturing processes[J]. Frontiers in Chemistry, 2018, 6:113-119.
    [21] 禇小立. 化学计量学方法与分子光谱分析技术[M].北京:化学工业出版社,2011. ZHE X L. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and its Applications[M]. Beijing:Chemical Industry Press, 2011(in Chinese).
    [22] 吴丰昌. 天然有机质及其与污染物的相互作用[M].北京:科学出版社,2010. WU F C. Natural Organic Matter and Its Interaction with Pollutants[M].Beijing:Science Press, 2010(in Chinese).
    [23] VALENCIA S, MARIN J M, RESTREPO G, et al. Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid[J]. Science of the Total Environment, 2013, 442(1):207-214.
    [24] ZHANG J Z, QIAN Y, XI B D, et al. Study on spectral characteristic of dissolved organic matter fractions extracted from municipal solid waste landfill leachate[J]. Spectroscopy & Spectral Analysis, 2008, 28(11):2605-2608.
    [25] MERRICK J P, DAMIAN M, LEO R. An evaluation of harmonic vibrational frequency scale factors[J]. Journal of Physical Chemistry A, 2007, 111(45):11683-11700.
    [26] GURKAN Y Y, TURKTEN N, HATIPOGLU A, et al. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation:Prediction of the reaction paths via conceptual DFT[J]. Chemical Engineering Journal, 2012, 184(3):113-124.
    [27] OKAMOTO Y, KIRIYAMA K, NAMILI Y, et al. Degradation kinetics and isomerization of cefdinir, a new oral cephalosporin, in aqueous solution. 1[J]. Journal of Pharmaceutical Sciences, 1996, 85(9):976-983.
  • 加载中
计量
  • 文章访问数:  1392
  • HTML全文浏览数:  1392
  • PDF下载数:  21
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-18
  • 刊出日期:  2019-12-10

电晕放电等离子体对头孢唑林钠的降解

    通讯作者: 王彬, E-mail: greenworldwb@swust.edu.cn
  • 1. 西南科技大学环境与资源学院, 绵阳, 621010;
  • 2. 西南科技大学固体废物处理与资源化教育部重点实验室, 绵阳, 621010
基金项目:

国家自然科学基金(41403081),四川省科技专项(2018SZDZX0020,2019YFH0175),四川省重点研发项目(2017SZ0178)和四川省教育厅重点项目(18ZA0500)资助.

摘要: 

为探究电晕放电等离子体对头孢唑林钠(cefazolin sodium,CFZ)的降解过程及产物,考察了不同因素对CFZ降解的影响,并结合光谱学及质谱分析推断出了CFZ降解过程中的部分中间产物及降解途径.结果表明,电晕放电等离子对CFZ有着良好的降解效能,且降解过程基本符合一级反应动力学,CFZ初始浓度、pH及载气条件均对反应存在影响.光谱学表明CFA被矿化NO3-、SO42-和CO32-等小分子无机离子.对CFZ的降解过程中降解副产物分析可知,电晕放电过程中CFZ主要有3种降解途径分别是噻二唑基团脱硫降解、头孢母核发生分子间内脂化和四氮唑开环矿化.

English Abstract

参考文献 (27)

目录

/

返回文章
返回