光催化复合氧化技术对环丙沙星和磺胺甲恶唑的深度处理

郭晋, 陈作雁, 石林, 刘刚, 韩立娟, 安兴才. 光催化复合氧化技术对环丙沙星和磺胺甲恶唑的深度处理[J]. 环境化学, 2019, (12): 2757-2767. doi: 10.7524/j.issn.0254-6108.2018122201
引用本文: 郭晋, 陈作雁, 石林, 刘刚, 韩立娟, 安兴才.

光催化复合氧化技术对环丙沙星和磺胺甲恶唑的深度处理

[J]. 环境化学, 2019, (12): 2757-2767. doi: 10.7524/j.issn.0254-6108.2018122201
GUO Jin, CHEN Zuoyan, SHI Lin, LIU Gang, HAN Lijuan, AN Xingcai. Advanced treatment of ciprofloxacin and sulfamethoxazole by the combined photocatalysis and oxidation technology[J]. Environmental Chemistry, 2019, (12): 2757-2767. doi: 10.7524/j.issn.0254-6108.2018122201
Citation: GUO Jin, CHEN Zuoyan, SHI Lin, LIU Gang, HAN Lijuan, AN Xingcai.

Advanced treatment of ciprofloxacin and sulfamethoxazole by the combined photocatalysis and oxidation technology

[J]. Environmental Chemistry, 2019, (12): 2757-2767. doi: 10.7524/j.issn.0254-6108.2018122201

光催化复合氧化技术对环丙沙星和磺胺甲恶唑的深度处理

    通讯作者: 安兴才, E-mail: 949583772@qq.com
  • 基金项目:

    甘肃省知识产权计划项目(18ZC1LA005)和兰州市科技计划项目(2018-4-18)资助.

Advanced treatment of ciprofloxacin and sulfamethoxazole by the combined photocatalysis and oxidation technology

    Corresponding author: AN Xingcai, 949583772@qq.com
  • Fund Project: Supported by Gansu Province Intellectual Property Project(18ZC1LA005)and Lanzhou Science and Technology Project (2018-4-18).
  • 摘要:

    研究了光催化复合氧化技术对两种典型抗生素环丙沙星和磺胺甲恶唑的降解与矿化效果.用响应面法对所采用的复合氧化反应器进行运行条件优化,然后在优化所得的最优运行条件的基础上分别探究了pH值对CIP和SMX在该复合氧化体系中降解与矿化效果的影响.结果表明,降解受pH影响较小,CIP在中性条件下更易被矿化,SMX在酸性条件下更易被矿化.最后对CIP和SMX在该体系中降解所生成的中间产物进行抑菌活性分析,结果表明,水样中的抑菌活性分别在CIP和SMX的矿化率达到34.12%和13.04%时完全消失.

  • 加载中
  • [1] 陈仁政.10个"发明之父"之五青霉素的发现者弗莱明[J].百科知识,2018(10):24-26. CHEN R Z. 10

    "Father of invention"(5) Fleming, who discovered penicillin[J].Encyclopedia of Knowledge,2018(10):24-26(in Chinese).

    [2] 吴青峰, 洪汉烈. 环境中抗生素污染物的研究进展[J]. 安全与环境工程, 2010, 17(2):68-72.

    WU Q F, HONG Q L. Progress of research on antibiotic contamination[J]. Safety and Environmental Engineering, 2010, 17(2):68-72(in Chinese).

    [3] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782.
    [4] HUANG C H, RENEW J E, SMEBY K L. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis[J]. Journal of Contemporary Water Research & Education, 2011, 120(1):30-40.
    [5] DE WITTE B, VAN LANGENHOVE H, DEMEESTERE K, et al. Advanced Oxidation of Pharmaceuticals:Chemical Analysis and Biological Assessment of Degradation Products[J]. Critical Reviews in Environmental Science & Technology, 2011, 41(3):215-242.
    [6] 王冉, 刘铁铮, 王恬. 抗生素在环境中的转归及其生态毒性[J]. 生态学报, 2006, 26(1):265-270.

    WANG R, LIU T Z, WANG T. The fate of antibiotics in environment and its ecotoxicology:A review[J]. Acta Ecologica Sinica, 2006, 26(1):265-270(in Chinese).

    [7] AKIYAMA T, SAVIN M C. Populations of antibiotic-resistant coliform bacteria change rapidly in a wastewater effluent dominated stream.[J]. Science of the Total Environment, 2010, 408(24):6192-6201.
    [8] GUO W Q, YIN R L, ZHOU X J. Current trends for biological antibiotic pharmaceutical wastewater treatment[J]. Advanced Materials Research, 2013, 726-731:2140-2145.
    [9] 章强, 辛琦, 朱静敏,等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7):1075-1083.

    ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7):1075-1083(in Chinese).

    [10] 张鹏飞, 刘晓文, 李杰, 等.养殖废水中抗生素去除处理工艺的研究现状[J].净水技术,2018,37(4):60-65

    ,95. ZHANG P F, LIU X W, LI J, et al. Current research in treatment processes for antibiotics removal from livesto[J].Water Purification Technology, 2018, 37(4):60-65,95(in Chinese).

    [11] 王超, 姚淑美, 彭叶平, 等.高级氧化法处理抗生素废水研究进展[J].化工环保,2018,38(2):135-140.

    WANG C, YAO S R, PENG Y P, et al.Research progresses on treatment of antibiotics wastewater by advanced oxidation process[J].Environmental Protection of Chemical Industry, 2018, 38(2):135-140(in Chinese).

    [12] 罗晓, 郝彤遥, 赵彦, 等.石墨烯基S掺杂TiO2光催化降解罗红霉素的研究[J].煤炭与化工,2016,39(10):1-7.

    LUO X, HSO T Y, ZHAO Y, et al.Research on photocatalytic degradation of roxithromycin by graphene based S doped TiO2[J].Coal and Chemical Industry, 2016, 39(10):1-7(in Chinese).

    [13] 濮倩敏,李泽胜,李德豪.钨酸铋纳米片光催化剂的制备以及四环素类抗生素降解性能研究[J].合成材料老化与应用,2018,47(4):72-75.

    PU Q M, LI S Z, LI D H. Preparation of bismuth tungstate nanoscale photocatalyst and the study on degradation performance of tetracycline antibiotics[J].Synthetic Materials Aging and Application,2018,47(4):72-75(in Chinese).

    [14] PAUL T, DODD M C, STRATHMANN T J. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin:Transformation products and residual antibacterial activity[J]. Water Research, 2010, 44(10):3121-3132.
    [15] BEL E D, DEWULF J, WITTE B D, et al. Influence of pH on the sonolysis of ciprofloxacin:Biodegradability, ecotoxicity and antibiotic activity of its degradation products[J]. Chemosphere, 2009, 77(2):291-295.
    [16] 宋永兵, 陈作雁, 刘刚,等.光催化真空紫外-臭氧氧化一体的反应器研制[J].水处理技术,2018,44(7):100-104

    +109. SONG Y B, CHEN Z Y, LIU G, et al. Development of the photocatalytic vacuum ultraviolet and ozone oxidation integrated reactor[J].Technology of Water Treatment,2018,44(7):100-104+109(in Chinese).

    [17] VASCONCELOS T G, KÜMMERER K, HENRIQUES D M, et al. Ciprofloxacin in hospital effluent:Degradation by ozone and photoprocesses.[J]. Journal of Hazardous Materials, 2009, 169(1):1154-1158.
    [18] 李硕, 王奕岚, 童玲,等. 响应面分析法优化有机污染原水的处理工艺[J]. 中国给水排水, 2016(17):133-137. LI S, WANG L F, TONG L, et al. Optimization of treatment process for organic pollutants contaminated raw water by response surface methodology[J]. China Water & Wastewater, 2016

    (17):133-137(in Chinese).

    [19] DOORSLAER X V, DEMEESTERE K, HEYNDERICKX P M, et al. UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin:Reaction kinetics and role of adsorption[J]. Applied Catalysis B Environmental, 2011, 101(3-4):540-547.
    [20] 张静, 杜亚威, 茹星瑶, 等.pH对微气泡臭氧氧化处理染料废水影响[J].环境工程学报,2016,10(2):742-748.

    ZHANG J, DU Y W, RU X Y, et al.Effect of p H on microbubble ozonation treatment of dyeing wastewater[J].Chinese Journal of Environmental Engineering,2016,10(2):742-748(in Chinese).

    [21] 代欣欣, 李汴生. 水中臭氧溶解特性的研究[J]. 食品科技, 2008, 33(8):84-87.

    DAI X X, LI D S. Studies on solubility characteristics of ozone in water[J]. Food Science and Technology, 2008, 33(8):84-87(in Chinese).

    [22] AVISAR D, LESTER Y, MAMANE H. pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water[J]. Journal of Hazardous Materials, 2010, 175(1-3):1068-1074(in Chinese).
    [23] 宋亚丽,田家宇,齐晶瑶,等.Ag/g-C3N4可见光催化降解磺胺甲恶唑的性能及机理[J].环境工程学报,2018,12(11):3079-3089.

    SONG Y L, TIAN J Y, QI J Y, et al. Performance and mechanism of visible-light photodegradation of sulfamethoxazole by Ag/g-C3N4[J]. Chinese Journal of Environmental Engineering, 2018, 12(11):3079-3089(in Chinese).

  • 加载中
计量
  • 文章访问数:  1762
  • HTML全文浏览数:  1762
  • PDF下载数:  35
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-12-22
  • 刊出日期:  2019-12-10

光催化复合氧化技术对环丙沙星和磺胺甲恶唑的深度处理

    通讯作者: 安兴才, E-mail: 949583772@qq.com
  • 1. 兰州交通大学环境与市政工程学院, 兰州, 730070;
  • 2. 甘肃自然能源研究所, 兰州, 730000
基金项目:

甘肃省知识产权计划项目(18ZC1LA005)和兰州市科技计划项目(2018-4-18)资助.

摘要: 

研究了光催化复合氧化技术对两种典型抗生素环丙沙星和磺胺甲恶唑的降解与矿化效果.用响应面法对所采用的复合氧化反应器进行运行条件优化,然后在优化所得的最优运行条件的基础上分别探究了pH值对CIP和SMX在该复合氧化体系中降解与矿化效果的影响.结果表明,降解受pH影响较小,CIP在中性条件下更易被矿化,SMX在酸性条件下更易被矿化.最后对CIP和SMX在该体系中降解所生成的中间产物进行抑菌活性分析,结果表明,水样中的抑菌活性分别在CIP和SMX的矿化率达到34.12%和13.04%时完全消失.

English Abstract

参考文献 (23)

目录

/

返回文章
返回