石化企业周边采暖季大气VOCs污染特征及化学反应活性

孙友敏, 赵继峰, 闫怀忠, 张桂芹, 杨雪. 石化企业周边采暖季大气VOCs污染特征及化学反应活性[J]. 环境化学, 2020, (9): 2358-2370. doi: 10.7524/j.issn.0254-6108.2019062502
引用本文: 孙友敏, 赵继峰, 闫怀忠, 张桂芹, 杨雪. 石化企业周边采暖季大气VOCs污染特征及化学反应活性[J]. 环境化学, 2020, (9): 2358-2370. doi: 10.7524/j.issn.0254-6108.2019062502
SUN Youmin, ZHAO Jifeng, YAN Huaizhong, ZHANG Guiqin, YANG Xue. Pollution characteristics and effects to atmospheric chemistry of VOCs in heating period surrounding petrochemical enterprise[J]. Environmental Chemistry, 2020, (9): 2358-2370. doi: 10.7524/j.issn.0254-6108.2019062502
Citation: SUN Youmin, ZHAO Jifeng, YAN Huaizhong, ZHANG Guiqin, YANG Xue. Pollution characteristics and effects to atmospheric chemistry of VOCs in heating period surrounding petrochemical enterprise[J]. Environmental Chemistry, 2020, (9): 2358-2370. doi: 10.7524/j.issn.0254-6108.2019062502

石化企业周边采暖季大气VOCs污染特征及化学反应活性

    通讯作者: 杨雪, E-mail: yangxue19@sdjzu.edu.cn
  • 基金项目:

    山东省科技发展计划项目(2014GSF117002),山东建筑大学博士科研基金(X19036ZZ)和淄博市科技发展计划项目(2016KJ010009)资助.

Pollution characteristics and effects to atmospheric chemistry of VOCs in heating period surrounding petrochemical enterprise

    Corresponding author: YANG Xue, yangxue19@sdjzu.edu.cn
  • Fund Project: Supported by Shandong Science and Technology Development Plan Project (2014GSF117002), Shandong Jianzhu University, Doctoral Research Fund (X19036ZZ) and Zibo City Science and Technology Development Plan Project (2016KJ010009).
  • 摘要: 采集济南市石化企业周边采暖季环境空气中挥发性有机化合物(volatile organic compounds,VOCs)在线数据,进行了大气VOC成分组成及化学反应活性的分析.结果表明,2017年冬季采暖季期间,石化企业周边VOCs日均质量浓度为(57.82±49.79)μg·m-3,其中烷烃占比最高为61.53%,其次为芳香烃.日均质量浓度前三位的单体的分别是丙烷、乙烷和乙烯.MCM模拟结果表明,特殊污染日O3净生成反应速率为1.01(μg·m-3)·h-1,HO2+NO和RO2(除CH3O2外)+NO两大反应控制O3生成;而NO2+OH反应控制O3消耗.增量反应活性RIR和臭氧生成潜势OFP计算结果表明∑VOCs和NOx共同控制O3生成,且VOCs中的芳香烃和烯烃对O3的生成影响较大;对二次有机气溶胶生成贡献率最大的VOCs物种是芳香烃类,其贡献率高达94.05%,贡献率最高单体物质是甲苯,其次为乙苯.因此控制芳香烃类VOCs物种排放不仅可以减轻石化企业周边的冬季臭氧污染,同时对济南市的冬季灰霾污染有一定的控制.PMF源解析结果表明工业污染源、汽油挥发源和机动车尾气排放源是石化企业周边采暖季大气中VOCs的主要来源,控制这三类污染源排放是目前治理石化企业周边采暖季VOCs污染的主要途径.
  • 加载中
  • [1] CARLTON A G, WIEDINMYER C, KROLL J H. A review of Secondary Organic Aerosol (SOA) formation from isoprene[J]. Atmospheric Chemistry and Physics, 2009, 9(14):4987-5005.
    [2] 伏志强, 郭佳, 王章玮, 等.贵阳市大气臭氧生成过程与敏感性初步分析[J].环境化学, 2019, 38(1):161-168.

    FU Z Q, GUO J, WANG Z W, et al. Preliminary analysis of atmospheric ozone generation process and sensitivity in Guiyang City[J]. Environmental Chemistry, 2019, 38(1):161-168(in Chinese).

    [3] CLAEYS M, GRAHAM B, VAS G, et al. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 2004.303(5661):1173-1176.
    [4] BIGAZZI A Y, FIGLIOZZI M A, LUO W, et al. Breath biomarkers to measure uptake of volatile organic compounds by bicyclists[J]. Environmental Science & Technology, 2016, 50(10):5357-5363.
    [5] 生态环境部,中国空气质量改善报告(2013-2018年)[R].北京:生态环境部,2019:1-5. Ministry of ecological environment, China air quality improvement report (2013-2018

    )[R].Beijing; Ministry of Ecological Environment, 2019:1-5(in Chinese).

    [6] 张璘, 张祥志, 秦玮, 等, G20峰会期间宜兴市大气VOCs特征及来源分析[J]. 环境科学, 2017, 38(7):2718-2727.

    ZHANG Y, ZHANG X Z, QIN W, et al. Analysis of the characteristics and sources of atmospheric VOCs in Yixing during the G20 summit[J]. Environmental Science, 2017, 38(7):2718-2727(in Chinese).

    [7] 王琴, 刘保献, 张大伟, 等, 北京市大气VOCs的时空分布特征及化学反应活性[J]. 中国环境科学, 2017.37(10):3636-3646.

    WANG Q, LIU B X, ZHANG D W, et al. Spatiotemporal distribution characteristics and chemical reactivity of VOCs in the atmosphere of Beijing[J]. China Environmental Science, 2017, 37(10):3636-3646(in Chinese).

    [8] GRIFFIN R J, NGUYEN K, DABDUB D, A coupled hydrophobic-hydrophilic model for predicting secondary organic aerosol formation[J].Journal of Atmospheric Chemistry, 2003, 44(2):171-180.
    [9] 李友平, 唐娅, 范忠雨, 等, 成都市大气环境VOCs污染特征及其健康风险评价[J]. 环境科学, 2018, 39(2):576-584.

    LI Y P, TANG Y, FAN Z Y, et al. Characteristics of VOCs pollution and health risk assessment in Chengdu air environment[J]. Environmental Science, 2018, 39(2):576-584(in Chinese).

    [10] 黄薇薇, 我国工业源挥发性有机化合物排放特征及其控制技术评估研究[D].杭州:浙江大学,2016. HUANG W W, Study on emission characteristics of volatile organic compounds from industrial sources in china and evaluation of their control technology[D]. Hangzhou:Zhejiang University, 2016(in Chinese).
    [11] RAVINDRA K, SOKHI R, RENÉ V G, Atmospheric polycyclic aromatic hydrocarbons:Source attribution, emission factors and regulation[J]. Atmospheric Environment, 2008.42(13):2895-2921.
    [12] YANG X, XUE L K, WANG T, et al. Observations and explicit modeling of summertime carbonyl formation in Beijing:Identification of key precursor species and their impact on atmospheric oxidation chemistry[J]. Journal of Geophysical Research Atmospheres, 2018, 123(2):1426-1440.
    [13] XUE L K, WANG T,WANG X F, et al. On the use of an explicit chemical mechanism to dissect peroxy acetyl nitrate formation[J]. Environmental Pollution, 2014, 195(36):39-47.
    [14] XUE L K, WANG T, GUO H, et al. Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China:Results from the Mt. Waliguan Observatory[J]. Atmospheric Chemistry and Physics, 2013, 13(17):8551-8567.
    [15] XUE L K, GU R R, WANG T, et al. Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region:Analysis of a severe photochemical smog episode[J]. Atmospheric Chemistry and Physics Discussions, 2016, 16(15):9891-9903.
    [16] EPA, EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and user guide[M]. 2015. U.S. Environmental Protection Agency National Exposure Research Laboratory. Research Triangle Park, NC 27711.
    [17] 黄玲. 某重点产业园区VOCs在线监测系统[J]. 绿色科技, 2018(6):76-80. HUANG L. VOCs online monitoring system in a key industrial park[J]. Green Technology, 2018

    (6):76-80(in Chinese).

    [18] 李雷, 李红, 王学中, 等, 广州市中心城区环境空气中挥发性有机物的污染特征与健康风险评价[J]. 环境科学, 2013, 34(12):4558-4564.

    LI L, LI H, WANG X Z, et al. Pollution characteristics and health risk assessment of volatile organic compounds in the ambient air of Guangzhou city center[J]. Environmental Science, 2013, 34(12):4558-4564(in Chinese).

    [19] 温彦平,闫雨龙,李丽娟, 等, 太原市夏季挥发性有机物污染特征及来源分析[J]. 太原理工大学学报, 2016, 47(3):331-336.

    WEN Y P, YAN Y L, LI L J, et al. Analysis of pollution characteristics and sources of volatile organic compounds in summer in Taiyuan[J]. Journal of Taiyuan University of Technology, 2016, 47(3):331-336(in Chinese).

    [20] 刘寅, 向峰, 韩新宇, 等, 昆明中心城区夏秋季大气VOCs的污染特征及来源解析[J]. 云南大学学报:自然科学版, 2018, 40(1):104-112.

    LIU Y, XIANG F, HAN X Y, et al. Analysis on the pollution characteristics and sources of VOCs in summer and autumn in Kunming central city[J]. Journal of Yunnan University:Natural Science Edition, 2018,40(1):104-112(in Chinese).

    [21] 李如梅,武媛媛,彭林, 等, 朔州市夏季环境空气中VOCs的污染特征及来源解析[J].环境化学,2017,36(5):984-993.

    LI R M, WU Y Y, PENG L, et al. Analysis of VOCs pollution characteristics and sources in summer air of Shuozhou City[J]. Environmental Chemistry, 2017,36(5):984-993(in Chinese).

    [22] 李娜. 济南市环境空气中VOCs组分特征及转化规律研究[D]. 济南:山东建筑大学, 2014. LI N. Study on the characteristics and transformation rules of VOCs in the ambient air of Jinan City[D]. Jinan:Shandong Jianzhu University, 2014(in Chinese).
    [23] 王男.气象因素对沈阳市大气中臭氧的影响[J].环境科学与技术,2015,38(S1):61-65.

    WANG N. Influence of meteorological factors on ozone in the atmosphere of Shenyang City[J]. Environmental Science and Technology, 2015,38(S1):61-65(in Chinese).

    [24] XUE L K, WANG T, GAO J, et al. Ground-level ozone in four Chinese cities:Precursors, regional transport and heterogeneous processes[J]. Atmospheric Chemistry and Physics, 2014, 14(23):13175-13188.
    [25] CHENG H, GUO H, WANG X, et al. On the relationship between ozone and its precursors in the Pearl River Delta:Application of an observation-based model (OBM)[J]. Environmental Science and Pollution Research, 2010, 17(3):547-560.
    [26] CHANG C C, WANG J L, LIU S C, et al. Assessment of vehicular and non-vehicular contributions to hydrocarbons using exclusive vehicular indicators[J]. Atmospheric Environment, 2006, 40(33):6349-6361.
    [27] SILVA D, NEVES D B, MARTINS E M, et al. Role of carbonyls and aromatics in the formation of tropospheric ozone in Rio de Janeiro, Brazil[J]. Environmental Monitoring and Assessment, 2016, 188:289.
    [28] 黄海梅, 郭佳, 王章玮, 等, 贵阳市大气挥发性有机物的初步分析[J]. 环境化学, 2018,37(11):2387-2396.

    HUANG H M, GUO J, WANG Z W, et al. Preliminary analysis of atmospheric volatile organic compounds in Guiyang City[J]. Environmental Chemistry, 2018,37(11):2387-2396(in Chinese).

    [29] CARTER W P L, PIERCE J A, LUO D, et al. Environmental chamber study of maximum incremental reactivities of volatile organic compounds[J]. Atmospheric Environment, 1995, 29(18):2499-2511.
    [30] DANIEL G, In situ organic aerosol formation during a smog episode:Estimated production and chemical functionality[J]. Atmospheric Environment, 1992.26(6):953-963.
    [31]
    [32] YAN Y, YANG C, PENG L, et al. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J]. Atmospheric Environment, 2016, 143:261-269.
    [33] 叶伟红, 孙晓慧, 刘劲松, 等, 杭州市交通干线空气中挥发性有机物研究[J]. 中国环境监测, 2009, 25(6):85-89.

    YE W H, SUN X H, LIU J S, et al. Study on volatile organic compounds in the air of Hangzhou traffic trunk line[J]. China Environmental Monitoring, 2009, 25(6):85-89(in Chinese).

    [34] 王铁宇, 李奇锋, 吕永龙, 我国VOCs的排放特征及控制对策研究[J]. 环境科学, 2013, 34(12):4756-4763.

    WANG T Y, LI Q F, LV Y L, Emission characteristics and control strategies of VOCs in China[J]. Environmental Science, 2013, 34(12):4756-4763(in Chinese).

    [35] LIU Y, SHAO M, FU L, et al. Source profiles of volatile organic compounds (VOCs) measured in China:Part Ⅰ[J]. Atmospheric Environment, 2008, 42(25):6247-6260.
    [36] 陆思华, 白郁华, 陈运宽, 等, 北京市机动车排放挥发性有机化合物的特征[J]. 中国环境科学, 2003, 23(2):127-130.

    LU S H, BAI Y H, CHEN Y K, et al. Characteristics of VOCs emitted by motor vehicles in Beijing[J]. China Environmental Science, 2003, 23(2):127-130(in Chinese).

    [37]
  • 加载中
计量
  • 文章访问数:  3553
  • HTML全文浏览数:  3553
  • PDF下载数:  130
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-25
孙友敏, 赵继峰, 闫怀忠, 张桂芹, 杨雪. 石化企业周边采暖季大气VOCs污染特征及化学反应活性[J]. 环境化学, 2020, (9): 2358-2370. doi: 10.7524/j.issn.0254-6108.2019062502
引用本文: 孙友敏, 赵继峰, 闫怀忠, 张桂芹, 杨雪. 石化企业周边采暖季大气VOCs污染特征及化学反应活性[J]. 环境化学, 2020, (9): 2358-2370. doi: 10.7524/j.issn.0254-6108.2019062502
SUN Youmin, ZHAO Jifeng, YAN Huaizhong, ZHANG Guiqin, YANG Xue. Pollution characteristics and effects to atmospheric chemistry of VOCs in heating period surrounding petrochemical enterprise[J]. Environmental Chemistry, 2020, (9): 2358-2370. doi: 10.7524/j.issn.0254-6108.2019062502
Citation: SUN Youmin, ZHAO Jifeng, YAN Huaizhong, ZHANG Guiqin, YANG Xue. Pollution characteristics and effects to atmospheric chemistry of VOCs in heating period surrounding petrochemical enterprise[J]. Environmental Chemistry, 2020, (9): 2358-2370. doi: 10.7524/j.issn.0254-6108.2019062502

石化企业周边采暖季大气VOCs污染特征及化学反应活性

    通讯作者: 杨雪, E-mail: yangxue19@sdjzu.edu.cn
  • 1. 山东建筑大学市政与环境工程学院, 济南, 250101;
  • 2. 济南市环境监测中心站, 济南, 250014
基金项目:

山东省科技发展计划项目(2014GSF117002),山东建筑大学博士科研基金(X19036ZZ)和淄博市科技发展计划项目(2016KJ010009)资助.

摘要: 采集济南市石化企业周边采暖季环境空气中挥发性有机化合物(volatile organic compounds,VOCs)在线数据,进行了大气VOC成分组成及化学反应活性的分析.结果表明,2017年冬季采暖季期间,石化企业周边VOCs日均质量浓度为(57.82±49.79)μg·m-3,其中烷烃占比最高为61.53%,其次为芳香烃.日均质量浓度前三位的单体的分别是丙烷、乙烷和乙烯.MCM模拟结果表明,特殊污染日O3净生成反应速率为1.01(μg·m-3)·h-1,HO2+NO和RO2(除CH3O2外)+NO两大反应控制O3生成;而NO2+OH反应控制O3消耗.增量反应活性RIR和臭氧生成潜势OFP计算结果表明∑VOCs和NOx共同控制O3生成,且VOCs中的芳香烃和烯烃对O3的生成影响较大;对二次有机气溶胶生成贡献率最大的VOCs物种是芳香烃类,其贡献率高达94.05%,贡献率最高单体物质是甲苯,其次为乙苯.因此控制芳香烃类VOCs物种排放不仅可以减轻石化企业周边的冬季臭氧污染,同时对济南市的冬季灰霾污染有一定的控制.PMF源解析结果表明工业污染源、汽油挥发源和机动车尾气排放源是石化企业周边采暖季大气中VOCs的主要来源,控制这三类污染源排放是目前治理石化企业周边采暖季VOCs污染的主要途径.

English Abstract

参考文献 (37)

返回顶部

目录

/

返回文章
返回