镍、氮共掺杂碳纳米管的一锅制备法及其对牛奶样品中雌激素的萃取

丁炜楠, 刘婷婷, 赵丹青, 顾海东, 张占恩. 镍、氮共掺杂碳纳米管的一锅制备法及其对牛奶样品中雌激素的萃取[J]. 环境化学, 2020, (5): 1420-1426. doi: 10.7524/j.issn.0254-6108.2019080703
引用本文: 丁炜楠, 刘婷婷, 赵丹青, 顾海东, 张占恩. 镍、氮共掺杂碳纳米管的一锅制备法及其对牛奶样品中雌激素的萃取[J]. 环境化学, 2020, (5): 1420-1426. doi: 10.7524/j.issn.0254-6108.2019080703
DING Weinan, LIU Tingting, ZHAO Danqing, GU Haidong, ZHANG Zhanen. One-pot preparation method of nickel and nitrogen co-doped carbon nanotubes and its extraction of estrogen in milk samples[J]. Environmental Chemistry, 2020, (5): 1420-1426. doi: 10.7524/j.issn.0254-6108.2019080703
Citation: DING Weinan, LIU Tingting, ZHAO Danqing, GU Haidong, ZHANG Zhanen. One-pot preparation method of nickel and nitrogen co-doped carbon nanotubes and its extraction of estrogen in milk samples[J]. Environmental Chemistry, 2020, (5): 1420-1426. doi: 10.7524/j.issn.0254-6108.2019080703

镍、氮共掺杂碳纳米管的一锅制备法及其对牛奶样品中雌激素的萃取

    通讯作者: 张占恩, E-mail: ustswxd@163.com
  • 基金项目:

    科技部国家重点研发计划(2017YFC0211903)资助.

One-pot preparation method of nickel and nitrogen co-doped carbon nanotubes and its extraction of estrogen in milk samples

    Corresponding author: ZHANG Zhanen, ustswxd@163.com
  • Fund Project: Supported by the National Key R&D Program of China (2017YFC0211903).
  • 摘要: 利用高温煅烧法一步合成制备了磁性镍、氮共掺杂碳纳米管(Ni@N-CNTs)并将其与泡腾片剂结合应用于牛奶中4种雌激素的萃取.研究了萃取剂的质量,pH,洗脱剂种类及体积等对萃取回收率的影响,并通过磁固相萃取结合高效液相色谱法将其成功用于牛奶中雌二醇、雌酮、己烯雌酚和己烷雌酚等4种雌激素的检测.该方法对雌二醇和己烷雌酚的线性范围为1.0—500.0 μg·L-1,对雌酮和己烯雌酚的线性范围为2.0—500.0 μg·L-1,4种物质检出限为0.24—0.50 μg·L-1,日内日间精密度分别为3.18%—4.96%和4.54%—6.32%.牛奶样品中回收率为85.2%—102.9%.因此,建立的方法在微萃取领域有很大的应用前景.
  • 加载中
  • [1] DE OLIVEIRA T M, AUGUSTO PERES J, LURDES FELSNER M, et al. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GFAAS) with electrothermal atomization sampling from slurries[J]. Food Chemistry, 2017, 229:721-725.
    [2] JIANG Y H, TANG T T, GAO Z, et al. Determination of three estrogens and bisphenol A by functional ionic liquid dispersive liquid-phase microextraction coupled with ultra-high performance liquid chromatography and ultraviolet detection[J]. Journal of Separation Science, 2015, 38(12):2158-2166.
    [3] CHEN F F, WANG J Y, LU R C, et al. Fast and high-efficiency magnetic surface imprinting based on microwave-accelerated reversible addition fragmentation chain transfer polymerization for the selective extraction of estrogen residues in milk[J]. Journal of Chromatography A, 2018, 1562(10):19-26.
    [4] YUAN Y N, WANG M W, JIA N, et al. Graphene/multi-walled carbon nanotubes as an adsorbent for pipette-tip solid-phase extraction for the determination of 17β-estradiol in milk products[J]. Journal of Chromatography A, 2019, 1600(30):73-79.
    [5] 王亮,毛茜慧,守军,等. 气相色谱-质谱联用法同时测定污水中对羟基苯甲酸酯和甾体雌激素[J]. 环境化学,2016,35(1):49-56.

    WANG L, MAO Q H, SHOU J, et al. Simultaneous determination of parabens and steroid estrogens in sewage using gas chromatography-mass spectrometry[J]. Environmental Chemistry, 2016, 35(1):49-56(in Chinese).

    [6] WEI L, YAN Y, DENG J J, et al. Determination of estrogens in milk using polypyrrole fiber-mediated solid-phase extraction followed by high performance liquid chromatography[J]. Journal of the Brazilian Chemical Society, 2018, 29(10):2137-2143.
    [7] OLIVEIRA H L D, PIRES B C, TEIXEIRA L S, et al. Novel restricted access material combined to molecularly imprinted polymer for selective magnetic solid-phase extraction of estrogens from human urine[J]. Microchemical Journal, 2019,149:104043.
    [8] CHEN L, ZHANG M Y, FU F F, et al. Facile synthesis of magnetic covalent organic framework nanobeads and application to magnetic solid-phase extraction of trace estrogens from human urine[J]. Journal of Chromatography A, 2018, 1567(14):136-146.
    [9] YAO Q H, FENG Y F, TAN C, et al. An on-line solid-phase extraction disc packed with a phytic acid induced 3D graphene-based foam for the sensitive HPLC-PDA determination of bisphenol A migration in disposable syringes,[J]. Talanta, 2018, 179(1):153-158.
    [10] 王颖辉,腾飞,张媛媛,等. 碳包覆的磁性纳米材料萃取酞酸酯[J]. 环境化学,2013,32(12):2243-2249.

    WANG Y H, TENG F, ZHANG S X, et al. Carbon coated magnetic nanomaterial extraction phthalate[J]. Environmental Chemistry, 2013, 32(12):2243-2249(in Chinese).

    [11] WANG L L, ZHANG Z Z, XU X, et al. Simultaneous determination of four trace level endocrine disrupting compounds in environmental samples by solid-phase microextraction coupled with HPLC[J]. Talanta, 2015, 142(1):97-103.
    [12] HAN X F, CHEN J, SHI Y P. N-doped carbon nanotubes-reinforced hollow fiber solid-phase microextraction coupled with high performance liquid chromatography for the determination of phytohormones in tomatoes[J]. Talanta, 2018,185(1):132-140.
    [13] DíAZ-FLORES P E, ARCIBAR-OROZCO J A, PEREZ-AGUILAR N V, et al. Adsorption of organic compounds onto multiwall and nitrogen-doped carbon nanotubes:Insights into the adsorption mechanisms[J]. Water Air and Soil Pollution, 2017, 228(4):133-139.
    [14] WANG Z M, XU L H, QI C L, et al. Fabrication of MWCNTs-polysulfone composite membranes and its application in the removal of bisphenol A[J]. Materials Research Express, 2018,5(6):65-70.
    [15] ZHU M Y, DIAO G W. Review on the progress in synthesis and application of magnetic carbon Nanocomposites[J]. Nanoscale, 2011, 3(7):2748-2767.
    [16] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing[J]. Chemical Society Reviews, 2013,42:2824-2860.
    [17] SUN D M, LIU C, REN W C, et al. A review of carbon nanotube- and graphene-based flexible thin-film transistors[J]. Small, 2013, 9(8):1188-1205.
    [18] SUN Y Y, TIAN J, WANG L, et al. One pot synthesis of magnetic graphene/carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water[J]. Journal of Chromatography A, 2015, 1422(27):53-59.
    [19] HOOSHMAND S, ES'HAGHI Z. Hydrophilic modified magnetic multi-walled carbon nanotube for dispersive solid/liquid phase microextraction of sunitinib in human samples[J]. Analytical Biochemistry, 2018, 542:76-83.
    [20] 张巧利,徐强,张媛媛,等. 磁性介孔碳的制备及对水体中染料的吸附去除[J]. 环境化学,2018,37(11):2548-2554.

    ZHANG Q L, XU Q, ZHANG Y Y, et al. Preparation of magnetic mesoporous carbon and its application for dyes removal from water[J]. Environmental Chemistry, 2018, 37(11):2548-2554(in Chinese).

    [21] WANG Q, ZHANG L. Fabricated ultrathin magnetic nitrogen doped graphene tube as efficient and recyclable adsorbent for highly sensitive simultaneous determination of three tetracyclines residues in milk samples[J]. Journal of Chromatography A, 2018, 1568:1-7.
    [22] ZOU X X, HUANG X X, GOSWAMI A, et al. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values[J]. Angewandte Chemie, 2014, 126(17):4461-4465.
    [23] NING M Q, LI J B, KUANG B Y, et al. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (MFe, Co, Ni) for efficient microwave absorption[J]. Applied Surface Science, 2018, 447:244-253.
    [24] GAO Y J, XIA B, LIU J, et al. Development and characterization of a nanodendritic silver-based solid-phase extraction sorbent for selective enrichment of endocrine-disrupting chemicals in water and milk samples[J]. Analytica Chimica Acta, 2015, 900:76-82.
    [25] XU J, WANG L, ZHU Y F. Decontamination of bisphenol A from aqueous solution by graphene adsorption[J], Langmuir, 2012, 28(22):8418-8425.
  • 加载中
计量
  • 文章访问数:  1891
  • HTML全文浏览数:  1891
  • PDF下载数:  87
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-07
丁炜楠, 刘婷婷, 赵丹青, 顾海东, 张占恩. 镍、氮共掺杂碳纳米管的一锅制备法及其对牛奶样品中雌激素的萃取[J]. 环境化学, 2020, (5): 1420-1426. doi: 10.7524/j.issn.0254-6108.2019080703
引用本文: 丁炜楠, 刘婷婷, 赵丹青, 顾海东, 张占恩. 镍、氮共掺杂碳纳米管的一锅制备法及其对牛奶样品中雌激素的萃取[J]. 环境化学, 2020, (5): 1420-1426. doi: 10.7524/j.issn.0254-6108.2019080703
DING Weinan, LIU Tingting, ZHAO Danqing, GU Haidong, ZHANG Zhanen. One-pot preparation method of nickel and nitrogen co-doped carbon nanotubes and its extraction of estrogen in milk samples[J]. Environmental Chemistry, 2020, (5): 1420-1426. doi: 10.7524/j.issn.0254-6108.2019080703
Citation: DING Weinan, LIU Tingting, ZHAO Danqing, GU Haidong, ZHANG Zhanen. One-pot preparation method of nickel and nitrogen co-doped carbon nanotubes and its extraction of estrogen in milk samples[J]. Environmental Chemistry, 2020, (5): 1420-1426. doi: 10.7524/j.issn.0254-6108.2019080703

镍、氮共掺杂碳纳米管的一锅制备法及其对牛奶样品中雌激素的萃取

    通讯作者: 张占恩, E-mail: ustswxd@163.com
  • 苏州科技大学环境科学与工程学院, 苏州, 215009
基金项目:

科技部国家重点研发计划(2017YFC0211903)资助.

摘要: 利用高温煅烧法一步合成制备了磁性镍、氮共掺杂碳纳米管(Ni@N-CNTs)并将其与泡腾片剂结合应用于牛奶中4种雌激素的萃取.研究了萃取剂的质量,pH,洗脱剂种类及体积等对萃取回收率的影响,并通过磁固相萃取结合高效液相色谱法将其成功用于牛奶中雌二醇、雌酮、己烯雌酚和己烷雌酚等4种雌激素的检测.该方法对雌二醇和己烷雌酚的线性范围为1.0—500.0 μg·L-1,对雌酮和己烯雌酚的线性范围为2.0—500.0 μg·L-1,4种物质检出限为0.24—0.50 μg·L-1,日内日间精密度分别为3.18%—4.96%和4.54%—6.32%.牛奶样品中回收率为85.2%—102.9%.因此,建立的方法在微萃取领域有很大的应用前景.

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回