混合酸溶-电感耦合等离子体发射光谱法测定粉煤灰样品中的微量元素镓
Determination of trace element gallium in coal fly ash sample by ICP-OES with mixed acid solution
-
摘要: 粉煤灰是我国最大的工业固体废弃物之一,准确测定粉煤灰中镓(Ga)的含量对实现粉煤灰的高附加值利用具有重要的意义.通常采用分光光度法测定粉煤灰样品中的Ga,需使用多种有机试剂,易造成环境污染.本文采用电感耦合等离子体发射光谱法(ICP-OES)测定Ga,不使用有机试剂.通过考察HNO3、HCl、HF、HNO3-HCl、HNO3-HF-HClO4、HNO3-HF-HCl-HClO4的溶样效果,确定使用HNO3-HF-HClO4溶解样品.本方法的检出限为0.0042 μg·g-1,相对标准偏差为1.8%,加标回收率为95.4%—106.0%.方法简便、快速,应用于粉煤灰中Ga的分析,结果与X射线荧光光谱法(XRF)的测定值相符.
-
关键词:
- 粉煤灰 /
- 镓 /
- 电感耦合等离子体发射光谱法
Abstract: Coal fly ash is one of the biggest solid wastes. An accurate determination of gallium in the coal fly ash is crucial to the high-value-added utilization of coal fly ash. The determination of gallium in coal fly ash generally uses spectrophotometry, which requires many organic reagents, and it can pollute the environment. Gallium was determined using inductively coupled plasma optical emission spectrometry (ICP-OES) without using organic reagents in this study. The effects of HNO3, HCl, HF, HNO3-HCl, HNO3-HF-HClO4 and HNO3-HF-HCl-HClO4 were analyzed. A coal fly ash sample in this paper was decomposed by HNO3-HF. The limit of detection of the method was 0.0042 μg·g-1. The relative standard deviation was 1.8% with the recoveries ranged from 95.4% to 106.0%. This method was convenient and rapid and used in the determination of gallium from coal fly ash. The determined result was in accord with the result determined by X-ray fluorescence (XRF).-
Key words:
- coal fly ash /
- gallium /
- ICP-OES
-
[1] 刘新杰, 王昊, 刘丽丽.粉煤灰资源开发利用及产业发展[J]. 无机盐工业,2018,50(5):12-14. LIU X J, WANG H, LIU L L. Development and utilization of fly ash resources[J]. Inorganic Chemicals Industry, 2018, 50(5):12-14(in Chinese).
[2] 陈彦广, 陆佳, 韩洪晶,等.粉煤灰在环境材料中利用的研究进展[J]. 化学通报,2013,76(9):811-821. CHEN Y G, LU J, HAN H J, et al. Advances in environmental material utilization of fly ash[J]. Chemistry Bulletin, 2013, 76(9):811-821(in Chinese).
[3] 程芳琴, 王波, 成怀刚.粉煤灰提取高附加值有价元素的技术现状及进展[J]. 无机盐工业,2017,49(2):1-4. CHENG F Q, WANG B, CHENG H G. Research progress of extracting high added value elements from fly ash[J]. Inorganic Chemicals Industry, 2017, 49(2):1-4(in Chinese).
[4] 赵汀, 秦鹏珍, 王安建,等.镓矿资源需求趋势分析与中国镓产业发展思考[J]. 地球学报,2017,38(1):77-84. ZHAO T, QIN P Z, WANG A J, et al. An analysis of gallium ore resources demand trend and the thinking concerning China's gallium industry development[J]. Acta Geoscientica Sinica, 2017, 38(1):77-84(in Chinese).
[5] 冯建广, 高增, 王振江,等.镓在工业生产中的提取与应用[J]. 硅酸盐通报,2018,37(9):2852-2856. FENG J G, GAO Z, WANG Z J, et al. Extraction and application of gallium in industrial manufacture[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9):2852-2856(in Chinese).
[6] YAO Z T, JI X S, SARKER P K, et al. A comprehensive review on the applications of coal fly ash[J]. Earth-Science Reviews, 2015, 141:105-121. [7] MKETO N, NOMNGONGO P N, NGILA J C. An innovative microwave-assisted digestion method with diluted hydrogen peroxide for rapid extraction of trace elements in coal samples followed by inductively coupled plasma-mass spectrometry[J]. Microchemical Journal, 2016, 124:201-208. [8] 高依, 王英滨, 申万.聚氨酯泡塑吸附法提取粉煤灰中镓的实验研究[J]. 现代化工,2015,35(12):62-66. GAO Y, WANG Y B, SHEN W. Experimental study on recovery of gallium from fly ash by adsorption with polyurethane foam[J]. Modern Chemical Industry, 2015, 35(1):62-66(in Chinese).
[9] 李婷, 辛志峰, 徐梦,等.复合助剂活化粉煤灰对镓酸浸效果的研究[J]. 化学工程,2016,44(7):55-57. LI T, XIN Z F, XU M, et al. Acid leaching of gallium from fly ash activated by compound additive[J]. Chemical Engineering (China), 2016, 44(7):55-57(in Chinese).
[10] 谢华林, 李立波, 文海初.微波消解-ICP-MS法测定粉煤灰中重金属元素[J]. 冶金分析,2005,25(5):5-7. XIE H L, LI L B, WEN H C. Determination of trace heavy metals in fly ash with microwave digestion and ICP-MS[J]. Metallurgical Analysis, 2005, 25(5):5-7(in Chinese).
[11] 徐玉宏, 张静, 王静媛,等.微波消解-分光光度法测定农用粉煤灰中的硼[J]. 土壤,2009,41(5):833-835. XU Y H, ZHANG J, WANG J Y. et al. Determination of boron in fly ash for agricultural use by microwave digestion- spectrophotometry[J]. Soils, 2009, 41(5):833-835(in Chinese).
[12] 杨慧芬, 孟家乐, 张伟豪,等.盐酸-氢氟酸对高铝粉煤灰中铝的浸出作用[J]. 无机盐工业,2017,49(3):43-46. YANG H F, MENG J L, ZHANG W H. et al. Extracting alumina from high-alumina coal fly ash in HCl-HF mixed solution[J]. Inorganic Chemicals Industry, 2017, 49(3):43-46(in Chinese).
[13] 李婷, 辛志峰, 徐梦,等.烧结-碱溶法从高铝粉煤灰中浸出镓的研究[J]. 矿冶工程,2016,36(5):84-86. LI T, XIN Z F, XU M. et al. Alkaline leaching of gallium from fly ash activated by calcination[J]. Mining and Metallurgical Engineering, 2016, 36(5):84-86(in Chinese).
[14] 邓长生, 李盛富, 张建梅,等.常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽[J]. 岩矿测试,2018,37(4):364-370. DENG C S, LI S F, ZHANG J M, et al. Determination of niobium and tantalum in geochemical exploration samples by ICP-MS with acid solution at normal pressure[J]. Rock and Mineral Analysis, 2018, 37(4):364-370(in Chinese).
[15] 魏雅娟, 吴雪英, 江荆,等.微波消解-电感耦合等离子体原子发射光谱法测定银精矿中铅锌铜砷锑铋镉[J]. 冶金分析,2018,38(5):47-53. WEI Y J, WU X Y, JIANG J, et al. Determination of lead, zinc, copper, arsenic, antimony, bismuth and cadmium in silver concentrate by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2018, 38(5):47-53(in Chinese).
[16] 李晓敬, 边朋沙, 金倩,等.高压微波消解-电感耦合等离子体质谱法测定地质样品中分散元素镓铟铊锗碲镉[J]. 冶金分析, 2019,39(4):38-44. LI X J, BIAN P S, JIN Q, et al. Determination of disperse elements of gallium, indium, thallium, germanium, tellurium and cadmium in geological samples by inductively coupled plasma mass spectrometry with high-pressure microwave digestion[J]. Metallurgical Analysis, 2019, 39(4):38-44(in Chinese).
[17] 马生凤, 温宏利, 李冰,等.微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽[J]. 岩矿测试,2016,35(3):271-275. MA S F, WEN H L, LI B, et al. Determination of Nb and Ta in Nb-Ta ore by inductively coupled plasma-optical emission spectrometry with a combined microwave digestion hydrofluoric acid-resistant system[J]. Rock and Mineral Analysis, 2016, 35(3):271-275(in Chinese).
[18] 高贺凤, 王超, 张立纲,等.电感耦合等离子体质谱法精确测定地质样品中的微量元素镓[J]. 岩矿测试, 2013,32(5):709-714. GAO H F, WANG C, ZHANG L G, et al. Accurate determination of trace gallium in geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2013, 32(5):709-714(in Chinese).
[19] 赵慧玲,刘建.泡塑吸附分离萃取光度法测定粉煤灰中的镓[J].岩矿测试,2010,29(4):465-468. ZHAO H L, LIU J. Determination of gallium in coal fly ash sample by photometry after separation and pre-concentration with polyurethane foam absorption solvent extraction[J]. Rock and Mineral Analysis, 2010, 29(4):465-468.
[20] [21] 朱鲜红, 李德生, 张晶华,等.乙酸丁酯萃取火焰原子吸收光谱法测定铝土矿中微量镓[J]. 冶金分析,2004,24(6):63-65. ZHU X H, LI D S, ZHANG J H, et al. Determination of micro gallium in bauxite by butyl acetate extraction and flame atomic absorption spectometry[J]. Metallurgical Analysis, 2004, 24(6):63-65(in Chinese).
[22] 陶秋丽, 韩张雄, 熊英,等.微波消解-氢化物发生原子荧光光谱法测定粉煤灰中的硒[J]. 岩矿测试,2013,32(3):445-448. TAO Q L, HAN Z X, XIONG Y, et al. Determination of selenium in coal ash with microwave digestion and hydride generation-atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2013, 32(3):445-448(in Chinese).
[23] LOW F, ZHANG L. Microwave digestion for the quantification of inorganic elements in coal and coal ash using ICP-OES[J]. Talanta, 2012, 101:346-352. [24] ROUSSEAU T C C, SONKE J E, CHMELEFF J, et al. Rare earth element analysis in natural waters by multiple isotope dilution-sector field ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(4):573-584.
计量
- 文章访问数: 1424
- HTML全文浏览数: 1424
- PDF下载数: 63
- 施引文献: 0