中国东北地区10座城市室内外细颗粒物渗透系数及细菌组分、多样性、来源研究

陈茜, 吕阳, 周雨薇, 陈滨, 田玥宁, 刘璇, 杨芸畅. 中国东北地区10座城市室内外细颗粒物渗透系数及细菌组分、多样性、来源研究[J]. 环境化学, 2020, (5): 1169-1180. doi: 10.7524/j.issn.0254-6108.2019080904
引用本文: 陈茜, 吕阳, 周雨薇, 陈滨, 田玥宁, 刘璇, 杨芸畅. 中国东北地区10座城市室内外细颗粒物渗透系数及细菌组分、多样性、来源研究[J]. 环境化学, 2020, (5): 1169-1180. doi: 10.7524/j.issn.0254-6108.2019080904
CHEN Xi, LYU Yang, ZHOU Yuwei, CHEN Bin, TIAN Yuening, LIU Xuan, YANG Yunchang. Study on permeability coefficient and bacterial composition, diversity and sources of indoor and outdoor fine particles of ten cities in northeast China[J]. Environmental Chemistry, 2020, (5): 1169-1180. doi: 10.7524/j.issn.0254-6108.2019080904
Citation: CHEN Xi, LYU Yang, ZHOU Yuwei, CHEN Bin, TIAN Yuening, LIU Xuan, YANG Yunchang. Study on permeability coefficient and bacterial composition, diversity and sources of indoor and outdoor fine particles of ten cities in northeast China[J]. Environmental Chemistry, 2020, (5): 1169-1180. doi: 10.7524/j.issn.0254-6108.2019080904

中国东北地区10座城市室内外细颗粒物渗透系数及细菌组分、多样性、来源研究

    通讯作者: 吕阳, E-mail: lvyang@dlut.edu.cn
  • 基金项目:

    国家自然科学基金(91743102,51578103)和中央高校基本科研业务费(DUT18JC21)资助.

Study on permeability coefficient and bacterial composition, diversity and sources of indoor and outdoor fine particles of ten cities in northeast China

    Corresponding author: LYU Yang, lvyang@dlut.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (91743102, 51578103) and the Fundamental Research Funds for the Central Universities(DUT18JC21).
  • 摘要: 生物气溶胶不仅在生态系统中发挥着重要的作用,与雾霾形成也有一定关系.本研究以中国东北地区十座城市的居住建筑为对象,在非供暖季与供暖季对室内外细颗粒物浓度进行测试,并采用16S rDNA技术分析细颗粒物中细菌的组分和α多样性,预测细菌来源.研究结果表明,在非供暖季10座城市室内外细颗粒物的渗透系数在0.7128—0.8367之间,各城市间相差不大,其原因是非供暖季居住建筑以自然通风为主;在供暖季10座城市室内外细颗粒物渗透系数在0.4303—0.698之间,各城市间存在较大差异,其原因与不同城市的产业结构、空气污染状况、建筑结构特点等因素有关.细菌组分分析表明,在非供暖季10座城市中变形菌门为优势菌种;在供暖季10座城市主要的优势菌种为变形菌门、拟杆菌门、厚壁菌门、放线菌门.α多样性分析显示,供暖季细菌物种总数是非供暖季的10倍,原因可能是室外细颗粒物浓度和紫外线强度不同所致.来源预测表明,非供暖季10座城市细菌群落来源分布较相似,主要来源为土壤、水源、粪便和腐败有机物等;供暖季10座城市细菌主要来源为粪便、土壤、水源、植物等,由于气候原因水源占比大幅下降.
  • 加载中
  • [1] FRÖHLICH-NOWOISKY J, KAMPF C J, WEBER B, et al. Bioaerosols in the Earth system:Climate, health, and ecosystem interactions[J]. Atmos Res, 2016, 182:346-376
    [2] ARIYA P A, AMYOT M. New directions:The role of bioaerosols in atmospheric chemistry and physics[J]. Atmospheric Environment, 2004, 38(8):1231-1232.
    [3] BROWN R M, LARSON D A, BOLD H C. Airborne Algae:Their abundance and heterogeneity[J]. Science, 1964, 143(3606):583-585.
    [4] CASTILLO J A, STATON S J R, TAYLOR T J, et al. Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique[J]. Analytical and Bioanalytical Chemistry, 2012, 403(1):15-26.
    [5] DESPRÉS, VIVIANE R, ALEX HUFFMAN J, BURROWS S M, et al. Primary biological aerosol particles in the atmosphere:A review[J]. Tellus B, 2012, 64. 10.3402/tellusb.v64i0.15598
    [6] GRAHAM B, GUYON P, MAENHAUT W, et al. Composition and diurnal variability of the natural Amazonian aerosol[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D24):AAC 5-1. 10.1029/2003JD003990
    [7] MADELIN T M. Fungal aerosols:A review[J]. Journal of Aerosol Science, 2014, 25(8):1405-1412.
    [8] MATTHIASMASER S, GRUBER S, JAENICKE R. The size distribution of primary biological aerosol particles in rain-water[J]. Nucleation & Atmospheric Aerosols, 1996:526-529.
    [9] ROGERSON A, DETWILER A. Abundance of airborne heterotrophic protists in ground level air of South Dakota[J]. Atmospheric Research, 1999, 51(1):35-44.
    [10] TESSON S V M, SKJØTH Carsten Ambelas, SANTL-TEMKIV Tina, et al. Airborne microalgae:Insights, opportunities, and challenges[J]. Applied & Environmental Microbiology, 2016, 82(7):1978-1991.
    [11] WOMACK A M, BOHANNAN B J M, GREEN J L. Biodiversity and biogeography of the atmosphere[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2010, 365(1558):3645-3653.
    [12] HUFFMAN J A, SINHA B, GARLAND R M, et al. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08[J]. Atmos Chem Phys, 2012, 12:11997-12019.
    [13] ESTILLORE A D, TRUEBLOOD J V, GRASSIAN V H. Atmospheric chemistry of bioaerosols:Heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases[J]. Chem Sci, 2016, 7:6604-6616.
    [14] MORRIS C E, CONEN F, HUFFMAN J A, et al. Bioprecipitation:A feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere[J]. Global Change Biology, 2014, 20(2):341-351.
    [15]
    [16] DOUWES J. Bioaerosol health effects and exposure assessment:Progress and prospects[J]. Annals of Occupational Hygiene, 2003, 47(3):187-200.
    [17] BROWN J K M. Aerial Dispersal of pathogens on the global and continental scales and its impact on plant disease[J]. Science, 2002, 297(5581):537-541.
    [18] BURROWS S M, BUTLER T, JÖCKEL P, et al. Bacteria in the global atmosphere-Part 2:Modeling of emissions and transport between different ecosystems[J]. Atmospheric Chemistry and Physics, 2009, 9(23):9281-9297.
    [19] WOMACK A M, BOHANNAN B J M, GREEN J L. Biodiversity and biogeography of the atmosphere[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2010, 365(1558):3645-3653.
    [20] HUFFMAN J A, PÖHLKER C, PRENNI A J, et al. High concentrations of biological aerosol particles and ice nuclei during and after rain[J]. Atmospheric Chemistry and Physics, 2013, 13(13):6151-6164.
    [21] 王贝贝,王宗爽,赵秀阁,等.我国成人室内外活动时间研究[J].环境与健康杂志,2014,31(11):945-948.

    WANG B B, WANG Z S, ZHAO X G, et al. Study on the time of indoor and outdoor activities for adults in China[J]. Journal of Environment and Health, 2014, 31(11):945-948(in Chinese).

    [22] 江桂斌. 当前细颗粒分析毒理研究中的问题与进展//中国化学会.中国化学会第十一届全国生物医药色谱及相关技术学术交流会(大会特邀报告及墙报)论文摘要集[C].中国化学会:中国化学会,2016:1. JIANG G B. Problems and advances in toxicological studies of fine particle analysi//China Chemical Society. Abstracts of papers from the 11th National Symposium on Biopharmaceutical Chromatography and Related Technologies of the Chinese Chemical Society (Special Invitation Report and Wall Paper of the Congress)[C].China Chemical Society:China Chemical Society, 2016:1

    (in Chinese).

    [23] 李越洋,姬亚芹,张军,等.盘锦市冬季大气PM2.5元素污染特征及来源解析[J].环境化学,2019,38(8):1891-1898.

    LI Y Y, JI Y Q, ZHANG J, et al. Pollution characteristics and source analysis of PM2.5 elements in winter in Panjin City[J].Environmental Chemistry, 2019,38(8):1891-1898(in Chinese).

    [24] 刘贤荣,郑权,胡恭任,等.南昌市道路尘PM2.5中重金属分布特征及健康风险评价[J].环境化学,2019,38(7):1609-1618.

    LIU X R, ZHENG Q, HU G R, et al. Distribution characteristics and health risk assessment of heavy metals in road dust PM2.5 in Nanchang City[J].Environmental Chemistry, 2019,38(7):1609-1618(in Chinese).

    [25] 邢雅婷,王帅,赵玲.呼和浩特市城区大气污染物浓度变化特征分析[J].环境化学,2019,38(5):1139-1149.

    XING Y T, WANG S, ZHAO L. Analysis of the variation characteristics of air pollutant concentration in urban area of Hohhot City[J]. Environmental Chemistry,2019,38(5):1139-1149(in Chinese).

    [26] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet Journal, 2011, doi:10.14806/ej.17.1.200
    [27] EDGAR ROBERT C,HAAS BRIAN J,CLEMENTE JOSE C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics,2011,27(16):2194-2200.
    [28] EDGAR Robert C. UPARSE:highly accurate OTU sequences from microbial amplicon readsc[J]. Nature Methods,2013,10(10):996-998.
    [29] WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007,73(16):5261-5267.
    [30] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(1):D590-D596.
    [31] 魏洪江,张玉平.辽宁统计年鉴[M].北京:中国统计出版社,2018. WEI H J, ZHANG Y P. Liaoning statistical yearbook[M]. Beijing:China Statistical Publishing House, 2018(in Chinese).
    [32] 王宏阳.吉林统计年鉴[M].北京:中国统计出版社,2018. WANG H Y. Jilin statistical yearbook[M]. Beijing:China Statistical Publishing House 2018(in Chinese).
    [33] 许晴, 张放, 许中旗, 等. Simpson指数和Shannon-Wiener指数若干特征的分析及"稀释效应"[J]. 草业科学, 2011, 28(4):527-531.

    XU Q, ZHANG F, XU Z Q, et al. Analysis of several features of the Simpson index and Shannon-Wiener index and the "dilution effect"[J]. Grassland, 2011, 28(4):527-531(in Chinese).

  • 加载中
计量
  • 文章访问数:  2317
  • HTML全文浏览数:  2317
  • PDF下载数:  73
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-09

中国东北地区10座城市室内外细颗粒物渗透系数及细菌组分、多样性、来源研究

    通讯作者: 吕阳, E-mail: lvyang@dlut.edu.cn
  • 大连理工大学土木学院, 大连, 116024
基金项目:

国家自然科学基金(91743102,51578103)和中央高校基本科研业务费(DUT18JC21)资助.

摘要: 生物气溶胶不仅在生态系统中发挥着重要的作用,与雾霾形成也有一定关系.本研究以中国东北地区十座城市的居住建筑为对象,在非供暖季与供暖季对室内外细颗粒物浓度进行测试,并采用16S rDNA技术分析细颗粒物中细菌的组分和α多样性,预测细菌来源.研究结果表明,在非供暖季10座城市室内外细颗粒物的渗透系数在0.7128—0.8367之间,各城市间相差不大,其原因是非供暖季居住建筑以自然通风为主;在供暖季10座城市室内外细颗粒物渗透系数在0.4303—0.698之间,各城市间存在较大差异,其原因与不同城市的产业结构、空气污染状况、建筑结构特点等因素有关.细菌组分分析表明,在非供暖季10座城市中变形菌门为优势菌种;在供暖季10座城市主要的优势菌种为变形菌门、拟杆菌门、厚壁菌门、放线菌门.α多样性分析显示,供暖季细菌物种总数是非供暖季的10倍,原因可能是室外细颗粒物浓度和紫外线强度不同所致.来源预测表明,非供暖季10座城市细菌群落来源分布较相似,主要来源为土壤、水源、粪便和腐败有机物等;供暖季10座城市细菌主要来源为粪便、土壤、水源、植物等,由于气候原因水源占比大幅下降.

English Abstract

参考文献 (33)

目录

/

返回文章
返回