水环境中新烟碱类农药去除技术研究进展

贺艳, 邓月华. 水环境中新烟碱类农药去除技术研究进展[J]. 环境化学, 2020, (7): 1963-1976. doi: 10.7524/j.issn.0254-6108.2019082102
引用本文: 贺艳, 邓月华. 水环境中新烟碱类农药去除技术研究进展[J]. 环境化学, 2020, (7): 1963-1976. doi: 10.7524/j.issn.0254-6108.2019082102
HE Yan, DENG Yuehua. A review on the removal technologies of neonicotinoid pesticides from aquatic environment[J]. Environmental Chemistry, 2020, (7): 1963-1976. doi: 10.7524/j.issn.0254-6108.2019082102
Citation: HE Yan, DENG Yuehua. A review on the removal technologies of neonicotinoid pesticides from aquatic environment[J]. Environmental Chemistry, 2020, (7): 1963-1976. doi: 10.7524/j.issn.0254-6108.2019082102

水环境中新烟碱类农药去除技术研究进展

    通讯作者: 贺艳, E-mail: nkheyan@163.com
  • 基金项目:

    西安科技大学教师科研启动资金(6310118039)资助.

A review on the removal technologies of neonicotinoid pesticides from aquatic environment

    Corresponding author: HE Yan, nkheyan@163.com
  • Fund Project: Supported by the Scientific Research Foundation of Xi'an University of Science and Technology(6310118039).
  • 摘要: 新烟碱类农药的大量使用导致其在水环境中普遍存在,对生态系统和人体健康构成巨大威胁.传统的生物处理技术对新烟碱类农药几乎没有去除效果,高效的去除技术成为目前水环境领域的研究热点.本文系统分析了水环境中新烟碱类农药的来源、危害及污染现状,综述了物理、化学和生物去除技术的研究进展,重点讨论了高级氧化技术,详细阐述了不同技术对新烟碱类农药的去除效果、机理及影响因素等,并指出了各技术的应用优势和限制,最后对新烟碱类农药去除技术的研究提出了展望.
  • 加载中
  • [1] JAMES K L, RANDALL N P, WALTERS K F A, et al. Evidence for the effects of neonicotinoids used in arable crop production on non-target organisms and concentrations of residues in relevant matrices:A systematic map protocol[J]. Environmental Evidence, 2016, 5(1):22-31.
    [2] 李田田, 郑珊珊, 王晶, 等. 新烟碱类农药的污染现状及转化行为研究进展[J]. 生态毒理学报, 2018, 13(4):9-21.

    LI T T, ZHENG S S, WANG J, et al. A Review on occurrence and transformation behaviors of neonicotinoid pesticides[J]. Asian Journal of Ecotoxicology, 2018, 13(4):9-21(in Chinese).

    [3] SHAO X, LIU Z, XU X, et al. Overall status of neonicotinoid insecticides in China:Production, application and innovation[J]. Journal of Pesticide Science, 2013, 38:1-9.
    [4] HLADIK M L, MAIN A R, GOULSON D. Environmental risks and challenges associated with neonicotinoid insecticides[J]. Environmental Science & Technology, 2018, 52(6):3329-3335.
    [5] KLARICH K L, PFLUG N, DEWALD E M, et al. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment[J]. Environmental Science & Technology Letters, 2017, 4(5):168-173.
    [6] BRADFORD B Z, HUSETH A S, GROVES R L. Widespread detections of neonicotinoid contaminants in central Wisconsin groundwater[J]. PLoS ONE, 2018, 13(10):e0201753.
    [7] HALLMANN C A, FOPPEN R P B, TURNHOUT C A M V, et al. Declines in insectivorous birds are associated with high neonicotinoid concentrations[J]. Nature, 2014, 511:341-343.
    [8] GOULSON D. Review:An overview of the environmental risks posed by neonicotinoid insecticides[J]. Journal of Applied Ecology, 2013, 50(4):977-987.
    [9] MORRISSEY C A, MINEAU P, DEVRIES J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates:A review[J]. Environment International, 2015, 74:291-303.
    [10] WOOD T J, GOULSON D. The environmental risks of neonicotinoid pesticides:A review of the evidence post 2013[J]. Environmental Science & Pollution Research International, 2017, 24(21):17285-17325.
    [11] KRUPKE C H, HUNT G J, EITZER B D, et al. Multiple routes of pesticide exposure for honey bees living near agricultural fields[J]. PLoS One, 2012, 7(1):e29268.
    [12] NUYTTENS D, DEVARREWAERE W, VERBOVEN P, et al. Pesticide-laden dust emission and drift from treated seeds during seed drilling:A review[J]. Pest Management Science, 2013, 69(5):564-575.
    [13] BONMATIN J M, GIORIO C, GIROLAMI V, et al. Environmental fate and exposure, neonicotinoids and fipronil[J]. Environmental Science and Pollution Research, 2015, 22(1):35-67.
    [14] QI W, SINGER H, BERG M, et al. Elimination of polar micropollutants and anthropogenic markers by wastewater treatment in Beijing, China[J]. Chemosphere, 2015, 119:1054-1061.
    [15] SADARIA A M, SUPOWIT S D, HALDEN R U. Mass balance assessment for six neonicotinoid insecticides during conventional wastewater and wetland treatment:Nationwide reconnaissance in U.S. Wastewater[J]. Environmental Science & Technology, 2016, 50(12):6199-6206.
    [16] ANDERSON J C, DUBETZ C, PALACE V P. Neonicotinoids in the Canadian aquatic environment:A literature review on current use products with a focus on fate, exposure, and biological effects[J]. Science of the Total Environment, 2015, 505:409-422.
    [17] ALEXANDER A C, CULP J M, LIBER K, et al. Effects of insecticide exposure on feeding inhibition in mayflies and oligochaetes[J]. Environmental Toxicology and Chemistry, 2007, 26(8):1726-1732.
    [18] BEKETOV M A, LIESS M. Potential of 11 pesticides to initiate downstream drift of stream macroinvertebrates[J]. Archives of Environmental Contamination and Toxicology, 2008, 55:247-253.
    [19] KREUTZWEISER D P, GOOD K P, CHARTRAND D T, et al. Are leaves that fall from imidacloprid-treated maple trees to control Asian Longhorned Beetles toxic to non-target decomposer organisms?[J]. Journal of Environmental Quality, 2008, 37:639-646.
    [20] ROESSINK I, MERGA L B, ZWEERS H J, et al. The neonicotinoid imidacloprid shows high chronic toxicity to mayfly nymphs[J]. Environmental Toxicology and Chemistry, 2013, 32:1096-1100.
    [21] CAVALLARO M C, MORRISSEY C A, HEADLEY J V, et al. Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors[J]. Environmental Toxicology and Chemistry, 2017, 36:372-382.
    [22] GE W, YAN S, WANG J, et al. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(6):1856-1862.
    [23] DIJK T C V, STAALDUINEN M A V, SLUIJS J P V D. Macro-invertebrate decline in surface water polluted with imidacloprid[J]. PLoS One, 2013, 9(2):e89837.
    [24] VAN DER SLUIJS J P, AMARAL-ROGERS V, BELZUNCES L P, et al. Conclusions of the worldwide integrated assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning[J]. Environmental Science and Pollution Research, 2015, 22(1):148-154.
    [25] HAN W, TIAN Y, SHEN X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity:An overview[J]. Chemosphere, 2018, 192:59-65.
    [26] OSAKA A, UEYAMA J, KONDO T, et al. Exposure characterization of three major insecticide lines in urine of young children in Japan-neonicotinoids, organophosphates, and pyrethroids[J]. Environmental Research, 2016, 147:89-96.
    [27] CASIDA J E, DURKIN K A. Neuroactive insecticides:Targets, selectivity, resistance, and secondary effects[J]. Annual Review of Entomology, 2013, 58(1):99-117.
    [28] STRUGER J, GRABUSKI J, CAGAMPAN S, et al. Factors influencing the occurrence and distribution of neonicotinoid insecticides in surface waters of southern Ontario, Canada[J]. Chemosphere, 2017, 169:516-523.
    [29] STARNER K, GOH K S.Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of california, USA, 2010-2011[J]. Bulletin of Environmental Contamination & Toxicology, 2012, 88(3):316-321.
    [30] NAEEM S, MARTIN B J, MARTIN K, et al. Pesticide body burden of the crustacean Gammarus pulex as a measure of toxic pressure in agricultural streams[J]. Environmental Science & Technology, 2018, 52(14):7823-7832.
    [31] HLADIKA M L, KOLPINB D W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA[J]. Environmental Chemistry, 2016, 13:12-20.
    [32] SULTANA T, MURRAY C, KLEYWEGT S, et al. Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada[J]. Chemosphere, 2018, 202:506-513.
    [33] ZHANG C, TIAN D, YI X, et al. Occurrence, distribution and seasonal variation of five neonicotinoids insecticides in surface water and sediment of the Pearl Rivers, South China[J]. Chemosphere, 2019, 217:437-446.
    [34] XIONG J, WANG Z, MA X, et al. Occurrence and risk of neonicotinoid insecticides in surface water in a rapidly developing region:Application of polar organic chemical integrative samplers[J]. Science of the Total Environment, 2019, 648:1305-1312.
    [35] CHEN Y, ZANG L, SHEN G, et al. resolution of the ongoing challenge of estimating nonpoint source neonicotinoid pollution in the yangtze river basin using a modified mass balance approach[J]. Environmental Science & Technology, 2019, 53(5):2539-2548.
    [36] CHEN Y, ZANG L, LIU M, et al. Ecological risk assessment of the increasing use of the neonicotinoid insecticides along the east coast of China[J]. Environment International, 2019, 127:550-557.
    [37] HLADIK M L, CORSI S R, KOLPIN D W, et al. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA[J]. Environmental Pollution, 2018, 235:1022-1029.
    [38] BATIKIAN CM, WATANABE A L K, PITT J, et al. Temporal pattern in levels of the neonicotinoid insecticide, imidacloprid, in an urban stream[J]. Chemosphere, 2019, 223:83-90.
    [39] HLADIK M L, KOLPIN D W, KUIVILA K M. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA[J]. Environmental Pollution, 2014, 193:189-196.
    [40] WIJNJA H, DOHERTY J J, SAFIE S A. Changes in pesticide occurrence in suburban surface waters in Massachusetts, USA, 1999-2010[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(2):228-232.
    [41] WILLIAMS N, SWEETMAN J. Distribution and concentration of neonicotinoid insecticides on waterfowl production areas in west central Minnesota[J]. Wetlands, 2019, 39(2):311-319.
    [42] HUSETH A S, GROVES R L, SALICE C J. Environmental fate of soil applied neonicotinoid insecticides in an irrigated potato agroecosystem[J]. PLoS One, 2014, 9(5):e97081.
    [43] METCALFE C D, HELM P, PATERSON G, et al. Pesticides related to land use in watersheds of the Great Lakes basin[J]. Science of the Total Environment, 2019, 648:681-692.
    [44] MAIN A R, HEADLEY J V, PERU K M, et al. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada's Prairie Pothole Region[J]. PLoS One, 2014, 9(3):e92821.
    [45] YAMAMOTO A, TERAO T, HISATOMI H, et al. Evaluation of river pollution of neonicotinoids in Osaka City (Japan) by LC/MS with dopant-assisted photoionisation[J]. Journal of Environmental Monitoring, 2012, 14(8):2189-2194.
    [46] SÁNCHEZ-BAYO F, HYNE R V. Detection and analysis of neonicotinoids in river waters-Development of a passive sampler for three commonly used insecticides[J]. Chemosphere, 2014, 99(3):143-151.
    [47] CASADO J, SANTILLO D, JOHNSTON P. Multi-residue analysis of pesticides in surface water by liquid chromatography quadrupole-Orbitrap high resolution tandem mass spectrometry[J]. Analytica Chimica Acta, 2018, 1024:1-17.
    [48] MOSCHET C, WITTMER I, SIMOVIC J, et al. How a complete pesticide screening changes the assessment of surface water quality[J]. Environmental Science & Technology, 2014, 48(10):5423-5432.
    [49] TSABOULA A, PAPADAKIS E N, VRYZAS Z, et al. Environmental and human risk hierarchy of pesticides:A prioritization method, based on monitoring, hazard assessment and environmental fate[J]. Environment International, 2016, 91:78-93.
    [50] CCANCCAPA A, MASIÁ, A, NAVARRO-ORTEGA, A, et al. Pesticides in the Ebro River basin:Occurrence and risk assessment[J]. Environmental Pollution, 2016, 211:414-424.
    [51] MASIÁ A, CAMPO J, NAVARRO-ORTEGA A, et al. Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data[J]. Science of the Total Environment, 2015, 503/504:58-68.
    [52] GONZALEZREY M, TAPIE N, LE M K, et al. Occurrence of pharmaceutical compounds and pesticides in aquatic systems[J]. Marine Pollution Bulletin, 2015, 96(1-2):384-400.
    [53] ZOUMENOU B Y M, AÏNA M P, TOKO I I, et al. Occurrence of acetamiprid residues in water reservoirs in the cotton basin of northern benin[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102:7-12.
    [54] IANCU V I, PETRE J, GALAON T, et al. Occurrence of neonicotinoid residues in Danube river and tributaries[J].Revista De Chimie, 2019, 70(1):313-318.
    [55] SPOSITO J C V, MONTAGNER C C, CASADO M, et al. Emerging contaminants in Brazilian rivers:Occurrence and effects on gene expression in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2018, 209:696-704.
    [56] ROCHA M P, DOURADO P L R, RODRIGUES M S, et al. The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil)[J]. Environmental Monitoring and Assessment, 2015, 187(7):442-454.
    [57] CHAU N D G, SEBESVARI Z, AMELUNG W, et al. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam:Evidence from two provinces[J]. Environmental Science and Pollution Research, 2015, 22(12):9042-9059.
    [58] ZAHOOR M. Adsorption of imidacloprid on powdered activated carbon and magnetic activated carbon[J]. Chemical & Biochemical Engineering Quarterly, 2011, 25(1):55-63.
    [59] VOORHEES J P, ANDERSON B S, PHILLIPS B M, et al. Carbon treatment as a method to remove imidacloprid from agriculture runoff[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(2):1-3.
    [60] PANIC S, RAKIĆ D, GUZSVÁNY V, et al. Optimization of thiamethoxam adsorption parameters using multi-walled carbon nanotubes by means of fractional factorial design[J]. Chemosphere, 2015, 141:87-93.
    [61] PANIC S, GUZSVÁNY V, KÓNYA, Z, et al. Kinetic, equilibrium and thermodynamic studies of thiamethoxam adsorption by multi-walled carbon nanotubes[J]. International Journal of Environmental Science and Technology, 2017, 14(6):1297-1306.
    [62] TAHA S M, AMER M E, ELMARSAFY A E, et al. Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water[J]. Journal of Environmental Chemical Engineering, 2014, 2(4):2013-2025.
    [63] MANDAL A, SINGH N. Optimization of atrazine and imidacloprid removal from water using biochars:Designing single or multi-staged batch adsorption systems[J]. International Journal of Hygiene and Environmental Health, 2017, 220(3):637-645.
    [64] ZHANG P, SUN H, REN C, et al. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption[J]. Environmental Pollution, 2018, 234:812-820.
    [65] TRAN V S, NGO H H, GUO W, et al. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water[J]. Bioresource Technology, 2015, 182:353-363.
    [66] MANDAL A, SINGH N, NAIN L. Agro-waste biosorbents:Effect of physico-chemical properties on atrazine and imidacloprid sorption[J]. Journal of Environmental Science and Health (Part B), 2017, 52(9):671-682.
    [67] NARAYANAN N, GUPTA S, GAJBHIYE V T, et al. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis[J]. Chemosphere, 2017, 173:502-511.
    [68] LIU G, LI L, XU D, et al. Metal-organic framework preparation using magnetic graphene oxide-β-cyclodextrin for neonicotinoid pesticide adsorption and removal[J]. Carbohydrate Polymers, 2017, 175:584-591.
    [69] 张媛媛, 路海燕, 王兵, 等. 微滤去除水中吡虫啉和啶虫脒[J]. 中国食品学报, 2015, 15(7):125-130.

    ZHANG Y Y, LU H Y, WANG B, et al. Removal of imidacloprid and acetamiprid in aqueous solution by microfiltration[J]. Journal of Chinese Institue of Food Science and Technology, 2015, 15(7):125-130(in Chinese).

    [70] 李斌, 殷桃, 张媛媛, 等. 紫外光照射降解水中吡虫啉和啶虫脒的研究[J]. 现代食品科技, 2014(5):145-149. LI B, YIN T, ZHANG Y Y, et al. Degradation of imidacloprid and acetamiprid in aqueous solution by ultraviolet irradiation[J]. Modern Food Science and Technology, 2014

    (5):145-149(in Chinese).

    [71] CRUZ-ALCALDE A, SANS C, ESPLUGAS S. Priority pesticides abatement by advanced water technologies:The case of acetamiprid removal by ozonation[J]. Science of the Total Environment, 2017, 599/600:1454-1461.
    [72] ZHAO Q, GE Y, ZUO P, et al. Degradation of Thiamethoxam in aqueous solution by ozonation:Influencing factors, intermediates, degradation mechanism and toxicity assessment[J]. Chemosphere, 2016, 146:105-112.
    [73] YIN K, DENG Y X, LIU C B, et al. Kinetics, pathways and toxicity evaluation of neonicotinoid insecticides degradation via UV/Chlorine Process[J]. Chemical Engineering Journal, 2018, 346:298-306.
    [74] MITSIKA E E, CHRISTOPHORIDIS C, FYTIANOS K. Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples:Kinetic study of the degradation and optimization using response surface methodology[J]. Chemosphere, 2013, 93(9):1818-1825.
    [75] PAPOUTSAKIS S, PULGARIN C, OLLER I, et al. Enhancement of the Fenton and photo-Fenton processes by components found in wastewater from the industrial processing of natural products:The possibilities of cork boiling wastewater reuse[J]. Chemical Engineering Journal, 2016, 304:890-896.
    [76] ZBILJIĆ J, GUZSVÁNY V, VAJDLE O, et al. Determination of H2O2 by MnO2 modified screen printed carbon electrode during Fenton and visible light-assisted photo-Fenton based removal of acetamiprid from water[J]. Journal of Electroanalytical Chemistry, 2015, 755:77-86.
    [77] CARRA I, SÁNCHEZ PÉREZ J A, MALATO S, et al. Application of high intensity UVC-LED for the removal of acetamiprid with the photo-Fenton process[J]. Chemical Engineering Journal, 2015, 264:690-696.
    [78] CARRA I, SIRTORI C, PONCE-ROBLES L, et al. Degradation and monitoring of acetamiprid, thiabendazole and their transformation products in an agro-food industry effluent during solar photo-Fenton treatment in a raceway pond reactor[J]. Chemosphere, 2015, 130:73-81.
    [79] MEIJIDE J, GÓMEZ J, PAZOS M, et al. Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions[J]. Journal of Hazardous Materials, 2016, 319:43-50.
    [80] WANG Y, ZHAO H, LI M, et al. Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid[J]. Applied Catalysis B:Environmental, 2014, 147:534-545.
    [81] ZHAO H, QIAN L, CHEN Y, et al. Selective catalytic two-electron O2 reduction for onsite efficient oxidation reaction in heterogeneous electro-Fenton process[J]. Chemical Engineering Journal, 2018, 332:486-498.
    [82] O'BOCKRIS M J. A primer on electrocatalysis[J]. J Serb Chem Soc, 2005, 70:475-487.
    [83] YAO Y, TENG G, YANG Y, et al. Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes:Electrode characterization, influencing factors and degradation pathways[J]. Separation and Purification Technology, 2019, 211:456-466.
    [84] GAYEN P, CHEN C, ABIADE J T, et al. Electrochemical oxidation of Atrazine and Clothianidin on Bi-doped SnO2-TinO2n-1 electrocatalytic reactive electrochemical membranes[J]. Environmental Science & Technology, 2018, 52(21):12675-12684.
    [85] LEBIK-ELHADI H, FRONTISTIS Z, AIT-AMAR H, et al. Electrochemical oxidation of pesticide thiamethoxam on boron doped diamond anode:Role of operating parameters and matrix effect[J]. Process Safety and Environmental Protection, 2018, 116:535-541.
    [86] SHESTAKOVA M, SILLANPAA M. Electrode materials used for electrochemical oxidation of organic compounds in wastewater[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(2):223-238.
    [87] YAO Y, HUANG C, YANG Y, et al. Electrochemical removal of thiamethoxam using three-dimensional porous PbO2-CeO2 composite electrode:Electrode characterization, operational parameters optimization and degradation pathways[J]. Chemical Engineering Journal, 2018, 350:960-970.
    [88] YANG H, LIU H, HU Z, et al. Consideration on degradation kinetics and mechanism of thiamethoxam by reactive oxidative species (ROSs) during photocatalytic process[J]. Chemical Engineering Journal, 2014, 245:24-33.
    [89] RÓZSA G, NÁFRÁDI M, ALAPI T, et al. Photocatalytic, photolytic and radiolytic elimination of imidacloprid from aqueous solution:Reaction mechanism, efficiency and economic considerations[J]. Applied Catalysis B:Environmental, 2019, 250:429-439.
    [90] RÓZSA G, KOZMÉR Z, ALAPI T, et al. Transformation of Z-thiacloprid by three advanced oxidation processes:Kinetics, intermediates and the role of reactive species[J]. Catalysis Today, 2017, 284:187-194.
    [91] JOSÉ FENOLL, GARRIDO I, PILAR HELLÍN, et al. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides[J]. Environmental Science and Pollution Research, 2015, 22(19):15055-15066.
    [92] ONG W, TAN L, NG Y, et al. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12):7159-7329.
    [93] SUN Y, MENG P, LIU X. Self-assembly of tungstophosphoric acid/acidified carbon nitride hybrids with enhanced visible-light-driven photocatalytic activity for the degradation of imidacloprid and acetamiprid[J]. Applied Surface Science, 2018, 456:259-269.
    [94] ŽABAR R, KOMEL T, FABJAN J, et al. Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides:Imidacloprid, thiamethoxam and clothianidin[J]. Chemosphere, 2012, 89:293-301.
    [95] BANIĆ N D, ABRAMOVIĆ B F, KRSTIĆ J B, et al. Novel WO3/Fe3O4 magnetic photocatalysts:Preparation, characterization and thiacloprid photodegradation[J]. Journal of Industrial & Engineering Chemistry, 2019, 70:264-275.
    [96] SHI E, XU Z, WANG W, et al. Ag2S-doped core-shell nanostructures of Fe3O4@Ag3PO4 ultrathin film:Major role of hole in rapid degradation of pollutants under visible light irradiation[J]. Chemical Engineering Journal, 2019, 366:123-132.
    [97] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation:A review[J]. Chemosphere, 2016, 151:178-188.
    [98] FAIZA R, MURTAZA S, ALI K J, et al. Oxidative removal of brilliant green by UV/S2O82-, UV/HSO/5, and UV/H2O2, processes in aqueous media:A comparative study[J]. Journal of Hazardous Materials, 2018, 357:506-514.
    [99] 郑立庆, 林宜动, 李春立, 等. 利用热激活过硫酸钾技术降解噻虫胺[J]. 工业水处理, 2016, 36(3):66-70.

    ZHENG L Q, LIN Y D, LI C L, et al. Degradation of clothianidin by heat-activated potassium persulfate process[J]. Industrial Water Treatment, 2016, 36(3):66-70(in Chinese).

    [100] 陈晓旸, 陈景文, 杨萍, 等. 均相Co/PMS系统降解吡虫啉的影响因素及降解途径研究[J]. 环境科学, 2007, 28(12):2816-2820.

    CHEN X Y, CHEN J W, YANG P, et al. Influential factors and degradation pathway of imidacloprid by homogeneous Co/PMS system[J]. Environmental Science, 2007, 28(12):2816-2820(in Chinese).

    [101] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334:1502-1517.
    [102] CARRA I, SÁNCHEZ PÉREZ J, MALATO S, et al. Performance of different advanced oxidation processes for tertiary wastewater treatment to remove the pesticide acetamiprid[J]. Journal of Chemical Technology & Biotechnology, 2014, 91:72-81.
    [103] ACERO J L, REAL F J, JAVIER BENITEZ F, et al. Degradation of neonicotinoids by UV irradiation:Kinetics and effect of real water constituents[J]. Separation and Purification Technology, 2019, 211:218-226.
    [104] CHEN L, CAI T, CHENG C, et al. Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems:A comparative study[J]. Chemical Engineering Journal, 2018, 351:1137-1146.
    [105] VELA N, FENOLL, JOSÉ, GARRIDO I, et al. Reclamation of agro-wastewater polluted with pesticide residues using sunlight activated persulfate for agricultural reuse[J]. Science of The Total Environment, 2019, 660:923-930.
    [106] 邝凡, 张宁, 胡威. 微生物降解新烟碱类农药研究进展[J]. 赣南师范大学学报, 2019(3):85-89. KUANG F, ZHANG N, HU W, et al. Advances in biodegradation of neonicotinoid pesticides[J].Journal of Gannan Normal University, 2019

    (3):85-89(in Chinese).

    [107] WANG G, YUE W, LIU Y, et al. Biodegradation of the neonicotinoid insecticide acetamiprid by bacterium Pigmentiphaga sp. strain AAP-1 isolated from soil[J]. Bioresource Technology, 2013, 138:359-368.
    [108] WANG G, ZHAO Y, GAO H, et al. Co-metabolic biodegradation of acetamiprid by Pseudoxanthomonas sp. AAP-7 isolated from a long-term acetamiprid-polluted soil[J]. Bioresource Technology, 2013, 150:259-265.
    [109] ZHOU L, ZHANG L, SUN S, et al. Degradation of the neonicotinoid insecticide acetamiprid via the N-carbamoylimine derivate (IM-1-2) mediated by the nitrile hydratase of the nitrogen-fixing bacterium Ensifer meliloti CGMCC 7333[J]. Journal of Agricultural and Food Chemistry, 2014, 62(41):9957-9964.
    [110] PHUGARE S S, KALYANI D C, GAIKWAD Y B, et al. Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori)[J]. Chemical Engineering Journal, 2013, 230:27-35.
    [111] HE X, WUBIE A J, DIAO Q, et al. Biodegradation of neonicotinoid insecticide, imidacloprid by restriction enzyme mediated integration (REMI) generated Trichoderma mutants[J]. Chemosphere, 2014, 112:526-530.
    [112] HUSSAIN S, HARTLEY C J, SHETTIGAR M, et al. Bacterial biodegradation of neonicotinoid pesticides in soil and water systems[J]. FEMS Microbiology Letters, 2016, 363(23):1-13.
    [113] PHUGARE S S, JADHAV J P. Biodegradation of acetamiprid by isolated bacterial strain Rhodococcus sp. BCH2 and toxicological analysis of its metabolites in silkworm (Bombax mori)[J]. CLEAN-Soil, Air, Water, 2015, 43(2):296-304.
    [114] KANJILAL T, BHATTACHARJEE C, DATTA S. Bio-degradation of acetamiprid from wetland wastewater using indigenous Micrococcus luteus strain SC 1204:Optimization, evaluation of kinetic parameter and toxicity[J]. Journal of Water Process Engineering, 2015, 6:21-31.
  • 加载中
计量
  • 文章访问数:  2919
  • HTML全文浏览数:  2919
  • PDF下载数:  124
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-21

水环境中新烟碱类农药去除技术研究进展

    通讯作者: 贺艳, E-mail: nkheyan@163.com
  • 西安科技大学地质与环境学院, 西安, 710054
基金项目:

西安科技大学教师科研启动资金(6310118039)资助.

摘要: 新烟碱类农药的大量使用导致其在水环境中普遍存在,对生态系统和人体健康构成巨大威胁.传统的生物处理技术对新烟碱类农药几乎没有去除效果,高效的去除技术成为目前水环境领域的研究热点.本文系统分析了水环境中新烟碱类农药的来源、危害及污染现状,综述了物理、化学和生物去除技术的研究进展,重点讨论了高级氧化技术,详细阐述了不同技术对新烟碱类农药的去除效果、机理及影响因素等,并指出了各技术的应用优势和限制,最后对新烟碱类农药去除技术的研究提出了展望.

English Abstract

参考文献 (114)

目录

/

返回文章
返回