离子迁移谱检测化学战剂的研究进展

南迪娜, 傅文翔, 李宝强, 刘卫卫, 孔景临. 离子迁移谱检测化学战剂的研究进展[J]. 环境化学, 2020, (7): 1949-1962. doi: 10.7524/j.issn.0254-6108.2019102301
引用本文: 南迪娜, 傅文翔, 李宝强, 刘卫卫, 孔景临. 离子迁移谱检测化学战剂的研究进展[J]. 环境化学, 2020, (7): 1949-1962. doi: 10.7524/j.issn.0254-6108.2019102301
NAN Dina, FU Wenxiang, LI Baoqiang, LIU Weiwei, KONG Jinglin. Application of ion mobility spectrometry in detection of chemical warfare agents[J]. Environmental Chemistry, 2020, (7): 1949-1962. doi: 10.7524/j.issn.0254-6108.2019102301
Citation: NAN Dina, FU Wenxiang, LI Baoqiang, LIU Weiwei, KONG Jinglin. Application of ion mobility spectrometry in detection of chemical warfare agents[J]. Environmental Chemistry, 2020, (7): 1949-1962. doi: 10.7524/j.issn.0254-6108.2019102301

离子迁移谱检测化学战剂的研究进展

    通讯作者: 孔景临, E-mail: jlkong@sina.com

Application of ion mobility spectrometry in detection of chemical warfare agents

    Corresponding author: KONG Jinglin, jlkong@sina.com
  • 摘要: 环境及生物样品中化学战剂的分析检测一直是禁化武领域的研究热点.离子迁移谱因具有分析快速、灵敏、可小型化等优点,成为现场快速检测化学战剂的有效手段.本文首先说明了离子迁移谱的基本原理和设备结构,阐述了非放射性离子化源的发展对检测对象广谱化的影响,介绍了离子迁移谱与热解吸、闭管采样、固相微萃取、吸气式冷凝器等前处理装置的结合,以及与色谱、质谱技术联用在复杂样品定性定量分析和数据处理等方面的研究进展,并对发展趋势进行了展望.
  • 加载中
  • [1] ŠVÁBENSKÁ E. Systems for detection and identification of biological aerosols[J]. Defence Science Journal, 2012, 62(6):404-411.
    [2] TERZIC O, SWAHN I, CRETU G, et al. Gas chromatography-full scan mass spectrometry determination of traces of chemical warfare agents and their impurities in air samples by inlet based thermal desorption of sorbent tubes[J]. Journal of Chromatography A, 2012, 1225:182-192.
    [3] KIM K, TSAY O G, ATWOOD D A, et al. Destruction and detection of chemical warfare agents[J]. Chemical Reviews, 2011, 111(9):5345-5403.
    [4] GIANNOUKOS S, BRKIĆ B, TAYLOR S, et al. Chemical sniffing instrumentation for security applications[J]. Chemical Reviews, 2016, 116(14):8146-8172.
    [5] WITKIEWICZ Z, SLIWKA E, NEFFE S. Chromatographic analysis of chemical compounds related to the chemical weapons convention[J]. TrAC Trends in Analytical Chemistry, 2016, 85:21-33.
    [6] SUBRAMANIAM R, ÅSTOT C, JUHLIN L, et al. Determination of S-2-(N, N-diisopropylaminoethyl)-and S-2-(N, N-diethylaminoethyl) methylphosphonothiolate, nerve agent markers, in water samples using strong anion-exchange disk extraction, in vial trimethylsilylation, and gas chromatography-mass spectrometry analysis[J]. Journal of Chromatography A, 2012, 1229:86-94.
    [7] KRYKORKOVA J, CAPOUN T. The equipment of Czech firefighters for the detection and field analyses of chemical warfare agents[J]. Toxics, 2014, 2(2):247-257.
    [8] KANGAS M J, BURKS R M, ATWATER J, et al. Colorimetric sensor arrays for the detection and identification of chemical weapons and explosives[J]. Reviews in Analytical Chemistry, 2017, 47(2):138-153.
    [9] PALIT M, MALLARD G. Dispersive derivatization liquid-liquid extraction of degradation products/precursors of mustards and V-agents from aqueous samples[J]. Journal of Chromatography A, 2011, 1218(32):5393-5400.
    [10] BAI F, HU Y, ZHAO R. Research on comprehensive defense technology of the emergency command vehicle//International Conference in Communications, Signal Processing, and Systems[C]. Springer, Singapore, 2018:1194-1201.
    [11] SRIDHAR L, KARTHIKRAJ R, LAKSHMI V V S, et al. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2014, 406(21):5235-5241.
    [12] TAK V, PUROHIT A, PARDASANI D, et al. Simultaneous detection and identification of precursors, degradation and co-products of chemical warfare agents in drinking water by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2014, 1370:80-92.
    [13] PUTON J, NAMIEŚNIK J. Ion mobility spectrometry:Current status and application for chemical warfare agents detection[J]. TrAC Trends in Analytical Chemistry, 2016, 85:10-20.
    [14] MÄKINEN M A, ANTTALAINEN O A, SILLANPÄÄM E T. Ion mobility spectrometry and its applications in detection of chemical warfare agents[J]. Analytical Chemistry, 2010, 82(23):9594-9600.
    [15] 程沙沙, 陈创, 王卫国, 等. 差分离子迁移谱和迁移时间离子迁移谱联用技术检测化学战剂模拟物[J]. 分析化学, 2014, 42(9):1264-1269.

    CHENG S S, CHEN C, WANG W G, et al. Detection of chemical warfare agents by differential mobility spectrometry and drift-time ion mobility spectrometry hybrid technology[J]. Chinese Journal of Analytical Chemistry, 2014, 42(9):1264-1269(in Chinese).

    [16] YAMAGUCHI S, ASADA R, KISHI S, et al. Detection performance of a portable ion mobility spectrometer with 63Ni radioactive ionization for chemical warfare agents[J]. Forensic Toxicology, 2010, 28(2):84-95.
    [17] MAZIEJUK M, PUTON J, SZYPOSZYŃSKA M, et al. Fragmentation of molecular ions in differential mobility spectrometry as a method for identification of chemical warfare agents[J]. Talanta,2015,144:1201-1206.
    [18] STEFAN Z, SEBASTIAN B, BAETHER W K M, et al. Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents[J]. Analytical Chemistry, 2008, 80(17):6671-6676.
    [19] YANG L, HAN Q, CAO S Y, et al. Portable solid phase micro-extraction coupled with ion mobility spectrometry system for on-site analysis of chemical warfare agents and simulants in water samples[J]. Sensors, 2014, 14(11):20963-20974.
    [20] BURYAKOV I A. Express analysis of explosives, chemical warfare agents and drugs with multicapillary column gas chromatography and ion mobility increment spectrometry[J]. Journal of Chromatography B, 2003, 800(1):75-82.
    [21] KOLAKOWSKI B M, D'AGOSTINO P A, CHENIER C, et al. Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry[J].Analytical Chemistry,2007, 79(21):8257-8265.
    [22] D'AGOSTINO P A, CHENIER C L. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2010, 24(11):1617-1624.
    [23] SATOH T, KISHI S, NAGASHIMA H, et al. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation[J]. Analytica Chimica Acta, 2015, 865(1):39-52.
    [24] SETO Y, HASHIMOTO R, TANIGUCHI T, et al. Development of ion mobility spectrometry with novel atmospheric electron emission ionization for field detection of gaseous and blister chemical warfare agents[J]. Analytical Chemistry, 2019, 91(8):5403-5414.
    [25] BOHNHORST A, KIRK A T, BERGER M, et al. Fast Orthogonal separation by superposition of time of flight and field asymmetric ion mobility spectrometry[J]. Analytical Chemistry, 2017, 90(2):1114-1121.
    [26] KANU A B, HAIGH P E, HILL H H. Surface detection of chemical warfare agent simulants and degradation products[J]. Analytica Chimica Acta, 2005, 553(1-2):148-159.
    [27] 刘友江, 陈池来, 张乐华, 等. 基于紫外光离子源高场不对称波形离子迁移谱的化学战剂模拟剂检测[J].分析化学, 2014, 42(9):1259-1263.

    LIU Y J, CHEN C L, ZHANG L H, et al. Detection of chemical warfare agent simulants by UV photoionization high-field asymmetric ion mobility spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(9):1259-1263(in Chinese).

    [28] GUNZER F, ZIMMERMANN S, BAETHER W. Application of a nonradioactive pulsed electron source for ion mobility spectrometry[J]. Analytical Chemistry, 2010, 82(9):3756-3763.
    [29] TSAI C W, TIPPLE C A, YOST R A. Integration of paper spray ionization high-field asymmetric waveform ion mobility spectrometry for forensic applications[J]. Rapid Communications in Mass Spectrometry, 2018, 32(7):552-560.
    [30] REARDEN P, HARRINGTON P B. Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME-IMS)[J]. Analytica Chimica Acta,2005,545(1):13-20.
    [31] STEINER W E, CLOWERS B H, HAIGH P E, et al. Secondary ionization of chemical warfare agent simulants:Atmospheric pressure ion mobility time-of-flight mass spectrometry[J]. Analytical Chemistry, 2003, 75(22):6068-6076.
    [32] STEINER W E, ENGLISH W A, HILL H H. Separation efficiency of a chemical warfare agent simulant in an atmospheric pressure ion mobility time-of-flight mass spectrometer (IM(tof)MS)[J]. Analytica Chimica Acta, 2004, 532(1):37-45.
    [33] STEINER W E, KLOPSCH S J, ENGLISH W A, et al. Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility time-of-flight mass spectrometry[J]. Analytical Chemistry, 2005, 77(15):4792-4799.
    [34] CAO L B, DE B H P, LIU C. Two-dimensional nonlinear wavelet compression of ion mobility spectra of chemical warfare agent simulants[J]. Analytical Chemistry, 2004, 76(10):2859-2868.
    [35] DAVIS E J, DWIVEDI P, TAM M, et al. High-pressure ion mobility spectrometry[J]. Analytical Chemistry, 2009, 81(9):3270-3275.
    [36] HARRIS G A, KWASNIK M, FERNÁNDEZ F M. Direct analysis in real time coupled to multiplexed drift tube ion mobility spectrometry for detecting toxic chemicals[J]. Analytical Chemistry, 2011, 83(6):1908-1915.
    [37] ASBURY G R, WU C, SIEMS W F, et al. Separation and identification of some chemical warfare degradation products using electrospray high resolution ion mobility spectrometry with mass selected detection[J]. Analytica Chimica Acta, 2000, 404(2):273-283.
    [38] STEINER W E, CHARLES S H, FENG H, et al. Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry[IM(tof)MS] [J]. Journal of the American Society for Mass Spectrometry, 2006, 17(2):241-245.
    [39] TØRNES J A. A novel headspace sampler for field detection of chemical warfare agents and simulants connected to a commercial ion mobility detector[J]. International Journal for Ion Mobility Spectrometry, 2016, 19(2-3):105-112.
    [40] ERICKSON R P, TRIPATHI A, MASWADEH W M, et al. Closed tube sample introduction for gas chromatography-ion mobility spectrometry analysis of water contaminated with a chemical warfare agent surrogate compound[J]. Analytica Chimica Acta, 2005, 556(2):455-461.
    [41] BOCOS-BINTINTAN V, BRITTAIN A, THOMAS C L P. Characterisation of the phosgene response of a membrane inlet 63 Ni ion mobility spectrometer[J]. Analyst, 2002, 127(9):1211-1217.
    [42] BEACH D G. Differential mobility spectrometry for improved selectivity in hydrophilic interaction liquid chromatography-tandem mass spectrometry analysis of paralytic shellfish toxins[J]. Journal of the American Society for Mass Spectrometry, 2017, 28(8):1518-1530.
    [43] POYER S, LOUTELIER-BOURHIS C, COADOU G, et al. Identification and separation of saxitoxins using hydrophilic interaction liquid chromatography coupled to traveling wave ion mobility-mass spectrometry[J]. Journal of Mass Spectrometry, 2015, 50(1):175-181.
    [44] ELLS B, FROESE K, HRUDEY S E, et al. Detection of microcystins using electrospray ionization high-field asymmetric waveform ion mobility mass spectrometry/mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2000, 14(16):1538-1542.
    [45] SHEIBANI A, TABRIZCHI M, GHAZIASKAR H S. Determination of aflatoxins B1 and B2 using ion mobility spectrometry[J]. Talanta, 2008, 75(1):233-238.
    [46] FOUQUE K J D, GARABEDIAN A, LENG F, et al. Microheterogeneity of Topoisomerase IA/IB and their DNA-bound states[J]. ACS Omega, 2019, 4(2):3619-3626.
    [47] SNYDER A P, DWORZANSKI J P, TRIPATHI A, et al. Correlation of mass spectrometry identified bacterial biomarkers from a fielded pyrolysis-gas chromatography-ion mobility spectrometry biodetector with the microbiological gram stain classification scheme[J]. Analytical Chemistry, 2004, 76(21):6492-6499.
    [48] BUCHKO G W, NIEMANN G, BAKER E S, et al. A multi-pronged search for a common structural motif in the secretion signal of Salmonella enterica serovar Typhimurium type Ⅲeffector proteins[J]. Molecular BioSystems, 2010, 6(12):2448-2458.
    [49] LOKHNAUTH J K, SNOW N H. Solid phase micro-extraction coupled with ion mobility spectrometry for the analysis of ephedrine in urine[J]. Journal of Separation Science, 2005, 28(7):612-618.
    [50] SETO Y. Analytical and on-site detection methods for chemical warfare agents[J]. Yakugaku zasshi:Journal of the Pharmaceutical Society of Japan, 2006, 126(12):1279-1299.
    [51] WITKIEWICZ Z, NEFFE S, SLIWKA E, et al. Analysis of the precursors, simulants and degradation products of chemical warfare agents[J]. Critical Reviews in Analytical Chemistry, 2018, 48(5):337-371.
    [52] STEINER W E, CLOWERS B H, MATZ L M, et al. Rapid screening of aqueous chemical warfare agent degradation products:Ambient pressure ion mobility mass spectrometry[J]. Analytical Chemistry, 2002, 74(17):4343-4352.
    [53] CAO L B, DE B H P, LIU J D. SIMPLISMA and ALS applied to two-way nonlinear wavelet compressed ion mobility spectra of chemical warfare agent simulants[J]. Analytical Chemistry, 2005, 77(8):2575-2586.
  • 加载中
计量
  • 文章访问数:  3137
  • HTML全文浏览数:  3137
  • PDF下载数:  117
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-10-23
南迪娜, 傅文翔, 李宝强, 刘卫卫, 孔景临. 离子迁移谱检测化学战剂的研究进展[J]. 环境化学, 2020, (7): 1949-1962. doi: 10.7524/j.issn.0254-6108.2019102301
引用本文: 南迪娜, 傅文翔, 李宝强, 刘卫卫, 孔景临. 离子迁移谱检测化学战剂的研究进展[J]. 环境化学, 2020, (7): 1949-1962. doi: 10.7524/j.issn.0254-6108.2019102301
NAN Dina, FU Wenxiang, LI Baoqiang, LIU Weiwei, KONG Jinglin. Application of ion mobility spectrometry in detection of chemical warfare agents[J]. Environmental Chemistry, 2020, (7): 1949-1962. doi: 10.7524/j.issn.0254-6108.2019102301
Citation: NAN Dina, FU Wenxiang, LI Baoqiang, LIU Weiwei, KONG Jinglin. Application of ion mobility spectrometry in detection of chemical warfare agents[J]. Environmental Chemistry, 2020, (7): 1949-1962. doi: 10.7524/j.issn.0254-6108.2019102301

离子迁移谱检测化学战剂的研究进展

    通讯作者: 孔景临, E-mail: jlkong@sina.com
  • 国民核生化灾害防护国家重点实验室, 北京, 102205

摘要: 环境及生物样品中化学战剂的分析检测一直是禁化武领域的研究热点.离子迁移谱因具有分析快速、灵敏、可小型化等优点,成为现场快速检测化学战剂的有效手段.本文首先说明了离子迁移谱的基本原理和设备结构,阐述了非放射性离子化源的发展对检测对象广谱化的影响,介绍了离子迁移谱与热解吸、闭管采样、固相微萃取、吸气式冷凝器等前处理装置的结合,以及与色谱、质谱技术联用在复杂样品定性定量分析和数据处理等方面的研究进展,并对发展趋势进行了展望.

English Abstract

参考文献 (53)

返回顶部

目录

/

返回文章
返回