多溴联苯醚对芳香烃受体的激活作用及其介导毒性的研究进展

梅楠, 池泉, 肖华明, 王献. 多溴联苯醚对芳香烃受体的激活作用及其介导毒性的研究进展[J]. 环境化学, 2020, (1): 50-60. doi: 10.7524/j.issn.0254-6108.2019082904
引用本文: 梅楠, 池泉, 肖华明, 王献. 多溴联苯醚对芳香烃受体的激活作用及其介导毒性的研究进展[J]. 环境化学, 2020, (1): 50-60. doi: 10.7524/j.issn.0254-6108.2019082904
MEI Nan, CHI Quan, XIAO Huaming, WANG Xian. Review on the study of activation effects of polybrominated diphenyl ethers on aryl hydrocarbon receptors and mediated toxicity[J]. Environmental Chemistry, 2020, (1): 50-60. doi: 10.7524/j.issn.0254-6108.2019082904
Citation: MEI Nan, CHI Quan, XIAO Huaming, WANG Xian. Review on the study of activation effects of polybrominated diphenyl ethers on aryl hydrocarbon receptors and mediated toxicity[J]. Environmental Chemistry, 2020, (1): 50-60. doi: 10.7524/j.issn.0254-6108.2019082904

多溴联苯醚对芳香烃受体的激活作用及其介导毒性的研究进展

    通讯作者: 王献, E-mail: xwang27@mail.scuec.edu.cn
  • 基金项目:

    国家自然科学基金(21675176)资助.

Review on the study of activation effects of polybrominated diphenyl ethers on aryl hydrocarbon receptors and mediated toxicity

    Corresponding author: WANG Xian, xwang27@mail.scuec.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21675176).
  • 摘要: 多溴联苯醚(polybrominated diphenyl ethers,PBDEs)是一类全球广泛存在的有机污染物,由于具有环境持久性,远距离传输,生物可累积性及对生物和人体有毒害效应等特性,是当前环境科学的热点研究对象之一.PBDEs的毒性包括生殖毒性、神经毒性、内分泌干扰、DNA损伤、免疫影响等,对人类以及环境具有潜在的威胁.芳香烃受体(aryl hydrocarbon receptor,AhR)是一种配体激活转录因子,诱导许多编码药物代谢酶的基因,可以被二噁英强效激活并引发一系列毒性.PBDEs具有与二噁英相似的结构,而被认为是一种潜在的AhR配体,但是PBDEs通过AhR介导的毒性机理仍然不明确.本文介绍和讨论了近10多年来PBDEs对AhR激活作用的研究,以及诱导的基因表达和毒性效应.虽然各文献的研究手段以及结论不尽相同,大多数研究表明大部分PBDEs对AhR的激活效果较为微弱,但仍有些PBDE需要引起重视.例如,BDE-126在大鼠肝细胞中的激活作用比其同系物更为突出,BDE-99可以激活斑马鱼胚胎中的AhR.此外,大多数羟基化或甲氧基化多溴联苯醚在家禽胚胎肝细胞、大鼠肝癌细胞中可以激活AhR,且可能比PBDEs具有更高的毒性和生物积累性.
  • 加载中
  • [1] FROMME H, BECHER G, HILGER B, et al. Brominated flame retardants-exposure and risk assessment for the general population[J]. International Journal of Hygiene and Environmental Health, 2016, 219(1):1-23.
    [2] MIKULA P, SVOBODOVÁ Z. Brominated flame retardants in the environment:Their sources and effects (a review)[J]. Acta Veterinaria Brno, 2006, 75(4):587-599.
    [3] XU W, WANG X, CAI Z. Analytical chemistry of the persistent organic pollutants identified in the stockholm convention:A review[J]. Analytica Chimica Acta, 2013, 790:1-13.
    [4] 万斌, 郭良宏. 多溴联苯醚的环境毒理学研究进展[J]. 环境化学, 2011, 30(1):143-152.

    WAN B, GUO L H. Advances in environmental toxicology research of polybrominated diphenyl ethers[J].Environment Chemistry, 2011, 30(1):143-152(in Chinese).

    [5] HARRAD S, WIT C A D, ABDALLAH M A-E, et al. Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds:An important exposure pathway for people[J]. Environmental Science and Technology, 2010, 44:3221-3231.
    [6] AN J, LI S, ZHONG Y, et al. The cytotoxic effects of synthetic 6-hydroxylated and 6-methoxylated polybrominated diphenyl ether 47(BDE47)[J]. Environmental Toxicology, 2011, 26(6):591-599.
    [7] XIANG C, LUO X, CHEN S, et al. Polybrominated diphenyl ethers in biota and sediments of the pearl river estuary, south China[J]. Environmental Toxicology and Chemistry, 2006, 26:616-623.
    [8] ZOU M, RAN Y, GONG J, et al. Polybrominated diphenyl ethers in watershed soils of the pearl river delta, China:Occurrence, inventory, and fate[J]. Environmental Science and Technology, 2007, 41:8262-8267.
    [9] TALSNESS C E. Overview of toxicological aspects of polybrominated diphenyl ethers:A flame-retardant additive in several consumer products[J]. Environmental Research, 2008, 108(2):158-167.
    [10] GUVENIUS D M, ARONSSON A, EKMAN-ORDEBERG G, et al. Human prenatal and postnatal exposure to polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorobiphenylols, and pentachlorophenol[J]. Environmental Health Perspectives, 2003, 111(9):1235-1241.
    [11] BI X, QU W, SHENG G, et al. Polybrominated diphenyl ethers in south China maternal and fetal blood and breast milk[J]. Environmental Pollution, 2006, 144(3):1024-1030.
    [12] XU B, WU M, WANG M, et al. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs in human serum from Shanghai, China:a study on their presence and correlations[J]. Environmental Science and Pollution Research, 2018, 25(4):3518-3526.
    [13] COSTA L G, GIORDANO G, TAGLIAFERRI S, et al. Polybrominated diphenyl ether (PBDE) flame retardants:Environmental contamination, human body burden and potential adverse health effects[J]. Acta Biomed, 2008, 79(3):172-183.
    [14] FROMME H, HILGER B, KOPP E, et al. Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and "novel" brominated flame retardants in house dust in Germany[J]. Environment International, 2014, 64:61-68.
    [15] BRAMWELL L, GLINIANAIA S V, RANKIN J, et al. Associations between human exposure to polybrominated diphenyl ether flame retardants via diet and indoor dust, and internal dose:A systematic review[J]. Environment International, 2016, 92-93:680-694.
    [16] ZOTA A R, MITRO S D, ROBINSON J F, et al. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs) in maternal and fetal tissues, and associations with fetal cytochrome P450 gene expression[J]. Environment International, 2018, 112:269-278.
    [17] 李建华, 沈梦楠, 程杰,等. 多溴二苯醚的生物代谢机制研究进展[J]. 中国科学:化学, 2013, 43(3):305-314.

    LI J H, SHEN M N, CHEN J, et al. Advances in studies on biological metabolic mechanisms of polybrominated diphenyl ethers[J]. Scientia Sinica(Chimica), 2013, 43(3):305-314(in Chinese).

    [18] SU G, XIA J, LIU H, et al. Dioxin-like potency of HO- and MeO- analogues of PBDEs' the potential risk through consumption of fish from eastern China[J]. Environmental Science and Technology, 2012, 46(19):10781-10788.
    [19] KURIYAMA S N, TALSNESS C E, GROTE K, et al. Developmental exposure to low dose PBDE 99:Effects on male fertility and neurobehavior in rat offspring[J]. Environmental Health Perspectives, 2005, 113(2):149-154.
    [20] LIU H, TANG S, ZHENG X, et al. Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio)[J]. Environmental Science and Technology, 2015, 49(3):1823-1833.
    [21] MEERTS I A T M. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro[J]. Toxicological Sciences, 2000, 56(1):95-104.
    [22] REN X M, GUO L H. Molecular toxicology of polybrominated diphenyl ethers:Nuclear hormone receptor mediated pathways[J]. Environmental Science-Processes & Impacts, 2013, 15(4):702-708.
    [23] DENISON M S, FABER S C. And now for something completely different:Diversity in ligand-dependent activation of Ah Receptor responses[J]. Curr Opin Toxicol, 2017, 2:124-131.
    [24] COSTA L G, DE LAAT R, TAGLIAFERRI S, et al. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity[J]. Toxicology Letters, 2014, 230(2):282-294.
    [25] 颜世帅, 徐海明, 秦占芬. 多溴二苯醚毒理学研究进展及展望[J]. 生态毒理学报, 2010, 5(5):609-617.

    YAN S S, XU H M, QIN Z F. Progress and prospects of research on toxicology of polybrominated diphenyl ether[J]. Asian Journal of Ecotoxicology, 2010, 5(5):609-617(in Chinese).

    [26] FADER K A, NAULT R, ZHANG C, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited effects on bile acid homeostasis:alterations in biosynthesis, enterohepatic circulation, and microbial metabolism[J]. Sci Rep, 2017, 7(1):5921.
    [27] PRELL R A, DEARSTYNE E, STEPPAN L G, et al. CTL hyporesponsiveness induced by 2,3,7, 8-tetrachlorodibenzo-p-dioxin:role of cytokines and apoptosis[J]. Toxicology and Applied Pharmacology, 2000, 166(3):214-221.
    [28] ALY H A, DOMENECH O. Cytotoxicity and mitochondrial dysfunction of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in isolated rat hepatocytes[J]. Toxicology Letters, 2009, 191(1):79-87.
    [29] HAHN M E. Aryl hydrocarbon receptors:diversity and evolution[J]. Chemico-Biological Interactions, 2002, 141(1-2):131-160.
    [30] BOCK K W. From TCDD-mediated toxicity to searches of physiologic AHR functions[J]. Biochemical Pharmacology, 2018, 155:419-424.
    [31] SONG J, CLAGETT-DAME M, PETERSON R E, et al. A ligand for the aryl hydrocarbon receptor isolated from lung[J]. Proceedings of the National Academy of Sciences, USA, 2002, 99(23):14694-14699.
    [32] OHTAKE F, FUJII-KURIYAMA Y, KATO S. AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions[J]. Biochemical Pharmacology, 2009, 77(4):474-484.
    [33] IKUTA T, NAMIKI T, FUJII-KURIYAMA Y, et al. AhR protein trafficking and function in the skin[J]. Biochemical Pharmacology, 2009, 77(4):588-596.
    [34] BEKKI K, VOGEL H, LI W, et al. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells[J]. Pesticide Biochemistry and Physiology, 2015, 120:5-13.
    [35] ZHOU L. AHR function in lymphocytes:Emerging concepts[J]. Trends in Immunology, 2016, 37(1):17-31.
    [36] WANG H, WEI Y, YU D. Control of lymphocyte homeostasis and effector function by the aryl hydrocarbon receptor[J]. International Immunopharmacology, 2015, 28(2):818-824.
    [37] NUTI R, GARGARO M, MATINO D, et al. Ligand binding and functional selectivity of L-tryptophan metabolites at the mouse aryl hydrocarbon receptor (mAhR)[J]. Journal of Chemical Information and Modeling, 2014, 54(12):3373-3383.
    [38] WAHL M, LAHNI B, GUENTHER R, et al. A technical mixture of 2,2',4,4'-tetrabromo diphenyl ether (BDE47) and brominated furans triggers aryl hydrocarbon receptor (AhR) mediated gene expression and toxicity[J]. Chemosphere, 2008, 73(2):209-215.
    [39] SWEDENBORG E, RüEGG J, MäKELä S, et al. Endocrine disruptive chemicals:Mechanisms of action and involvement in metabolic disorders[J]. Journal of Molecular Endocrinology, 2009, 43(1):1-10.
    [40] DARNERUD P O, ERIKSEN G S, JOHANNESSON T, et al. Polybrominated diphenyl ethers:Occurrence, dietary exposure, and toxicology[J]. Environmental Health Perspectives, 2001, 109 Suppl 1:49-68.
    [41] SCHREIBER T, GASSMANN K, GOTZ C, et al. Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model:Evidence for endocrine disruption[J]. Environmental Health Perspectives, 2010, 118(4):572-578.
    [42] SWEDENBORG E, PONGRATZ I. AhR and ARNT modulate ER signaling[J]. Toxicology, 2010, 268(3):132-138.
    [43] PUGA A, TOMLINSON C R, XIA Y. Ah receptor signals cross-talk with multiple developmental pathways[J]. Biochemical Pharmacology, 2005, 69(2):199-207.
    [44] BROWN D J, VAN OVERMEIRE I, GOEYENS L, et al. Analysis of Ah receptor pathway activation by brominated flame retardants[J]. Chemosphere, 2004, 55(11):1509-1518.
    [45] WAHL M, GUENTHER R, YANG L, et al. Polybrominated diphenyl ethers and aryl hydrocarbon receptor agonists:Different toxicity and target gene expression[J]. Toxicology Letters, 2010, 198(2):119-126.
    [46] CHEN G, BUNCE N J. Polybrominated diphenyl ethers as Ah receptor agonists and antagonists[J]. Toxicological Sciences, 2003, 76(2):310-320.
    [47] 黄飞飞, 李敬光, 赵云峰等. 我国沿海地区贝类样品中十溴联苯醚污染水平分析[J]. 环境化学, 2011, 30(2):418-422.

    HUANG F F, LI J G, ZHAO Y F, et al. Analysis of pollution level of decabromodiphenyl ether in shellfish samples from coastal areas of China[J].Environment Chemistry, 2011, 30(2):418-422(in Chinese).

    [48] PETERS A K, SANDERSON J T, BERGMAN A, et al. Antagonism of TCDD-induced ethoxyresorufin-O-deethylation activity by polybrominated diphenyl ethers (PBDEs) in primary cynomolgus monkey (Macaca fascicularis) hepatocytes[J]. Toxicology Letters, 2006, 164(2):123-132.
    [49] KIM Y R, HARDEN F A, TOMS L M, et al. Health consequences of exposure to brominated flame retardants:A systematic review[J]. Chemosphere, 2014, 106:1-19.
    [50] COSTA L G, GIORDANO G. Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants[J]. Neurotoxicology, 2007, 28(6):1047-1067.
    [51] QU W, BI X, SHENG G, et al. Exposure to polybrominated diphenyl ethers among workers at an electronic waste dismantling region in Guangdong, China[J]. Environment International, 2007, 33(8):1029-1034.
    [52] GOHLKE J M, STOCKTON P S, SIEBER S, et al. AhR-mediated gene expression in the developing mouse telencephalon[J]. Reproductive Toxicology, 2009, 28(3):321-328.
    [53] CARVER L A, HOGENESCH J B, BRADFIELD C A. Tissue specific expression of the rat Ah-receptor and ARNT mRNAs[J]. Nucleic Acids Research, 1994, 22(15):3038-3044.
    [54] GERLACH C V, DAS S R, VOLZ D C, et al. Mono-substituted isopropylated triaryl phosphate, a major component of Firemaster 550, is an AHR agonist that exhibits AHR-independent cardiotoxicity in zebrafish[J]. Aquatic Toxicology, 2014, 154:71-79.
    [55] GOODALE B C, LA DU J K, BISSON W H, et al. AHR2 mutant reveals functional diversity of aryl hydrocarbon receptors in zebrafish[J]. PLoS One, 2012, 7(1):e29346.
    [56] 沈华萍, 黄长江, 陆芳,等. PCBs和PBDEs对人类癌细胞和斑马鱼胚胎的毒性对比(英文)[J]. 生态毒理学报, 2009, 4(5):625-633.

    SHEN H P, HUANG C J, LU F, et al. Comparative toxicity of PCBs and PBDEs using human cancer cell lines and zebrafish embryos[J]. Asian Journal of Ecotoxicology, 2009, 4(5):625-633.

    [57] HOWE K, CLARK M D, TORROJA C F, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446):498-503.
    [58] KIM E Y, INOUE N, KOH D H, et al. The aryl hydrocarbon receptor 2 potentially mediates cytochrome P4501A induction in the jungle crow (Corvus macrorhynchos)[J]. Ecotoxicology and Environment Safety, 2019, 171:99-111.
    [59] ZHANG R, ZHANG J, ZHANG X, et al. In vitro dioxin-like potencies of HO- and MeO-PBDEs and inter-species sensitivity variation in birds[J]. Ecotoxicology and Environment Safety, 2016, 126:202-210.
    [60] PENG Y, XIA P, ZHANG J, et al. Toxicogenomic assessment of 6-OH-BDE47-induced developmental toxicity in chicken embryos[J]. Environmental Science and Technology, 2016, 50(22):12493-12503.
    [61] CHEN G, KONSTANTINOV A D, CHITTIM B G, et al. Synthesis of polybrominated diphenyl ethers and their capacity to induce CYP1A by the Ah receptor mediated pathway[J]. Environmental Science and Technology, 2001, 35(18):3749-3756.
    [62] GARCIA-REYERO N, ESCALON B L, PRATS E, et al. Effects of BDE-209 contaminated sediments on zebrafish development and potential implications to human health[J]. Environment International, 2014, 63:216-223.
    [63] LI X, WANG X, SHI W, et al. Analysis of Ah receptor binding affinities of polybrominated diphenyl ethers via in silico molecular docking and 3D-QSAR[J]. SAR and QSAR in Environmental Research, 2013, 24(1):75-87.
    [64] GU C G, JU X H, JIANG X, et al. DFT study on the bromination pattern dependence of electronic properties and their validity in quantitative structure-activity relationships of polybrominated diphenyl ethers[J]. SAR and QSAR in Environmental Research, 2009, 20(3-4):287-307.
    [65] GU C, GOODARZI M, YANG X, et al. Predictive insight into the relationship between AhR binding property and toxicity of polybrominated diphenyl ethers by PLS-derived QSAR[J]. Toxicology Letters, 2012, 208(3):269-274.
    [66] KOVARICH S, PAPA E, GRAMATICA P. QSAR classification models for the prediction of endocrine disrupting activity of brominated flame retardants[J]. Journal of Hazardous materials, 2011, 190(1-3):106-112.
    [67] YANG X, WANG X, ZHANG Y, et al. Holographic quantitative structure-activity relationship for prediction of the toxicity of polybrominated diphenyl ether congeners[J]. Science in China Series B:Chemistry, 2009, 52(12):2342-2350.
    [68] PACYNIAK E K, CHENG X, CUNNINGHAM M L, et al. The flame retardants, polybrominated diphenyl ethers, are pregnane X receptor activators[J]. Toxicological Sciences, 2007, 97(1):94-102.
    [69] SANDERS J M, BURKA L T, SMITH C S, et al. Differential expression of CYP1A, 2B, and 3A genes in the F344 rat following exposure to a polybrominated diphenyl ether mixture or individual components[J]. Toxicological Sciences, 2005, 88(1):127-133.
    [70] SUVOROV A, TAKSER L. Global gene expression analysis in the livers of rat offspring perinatally exposed to low doses of 2,2',4,4'-tetrabromodiphenyl ether[J]. Environmental Health Perspectives, 2010, 118(1):97-102.
    [71] VILLENEUVE D L, KANNAN K, PRIEST B T, et al. In vitro assessment of potential mechanism-specific effects of polybrominated diphenyl ethers[J]. Environmental Toxicology and Chemistry, 2002, 21:2431-2433.
    [72] ZHANG L, JIN Y, HAN Z, et al. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish[J]. Environmental Toxicology and Chemistry, 2018, 37(3):780-787.
    [73] YANG J, ZHU J, CHAN K M. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells[J]. Toxicology and Applied Pharmacology, 2016, 305:203-215.
    [74] USENKO C Y, ROBINSON E M, BRUCE E D, et al. Uptake and metabolism of individual polybrominated diphenyl ether congeners by embryonic zebrafish[J]. Environmental Toxicology and Chemistry, 2013, 32(5):1153-1160.
    [75] KUIPER R V, BERGMAN A, VOS J G, et al. Some polybrominated diphenyl ether (PBDE) flame retardants with wide environmental distribution inhibit TCDD-induced EROD activity in primary cultured carp (Cyprinus carpio) hepatocytes[J]. Aquatic Toxicology, 2004, 68(2):129-139.
    [76] OLSVIK P A, LIE K K, STURVE J, et al. Transcriptional effects of nonylphenol, bisphenol A and PBDE-47 in liver of juvenile Atlantic cod (Gadus morhua)[J]. Chemosphere, 2009, 75(3):360-367.
    [77] AN J, YIN L, SHANG Y, et al. The combined effects of BDE47 and BaP on oxidatively generated DNA damage in L02 cells and the possible molecular mechanism[J]. Mutation Research, 2011, 721(2):192-198.
    [78] SAQUIB Q, SIDDIQUI M A, AHMED J, et al. Hazards of low dose flame-retardants (BDE-47 and BDE-32):Influence on transcriptome regulation and cell death in human liver cells[J]. Journal of Hazardous materials, 2016, 308:37-49.
    [79] BARKER C W, FAGAN J B, PASCO D S. Interleukin-1 beta suppresses the induction of P4501A1 and P4501A2 mRNAs in isolated hepatocytes[J]. Journal of Biological Chemistry, 1992, 267(12):8050-8055.
    [80] BARBER J L, WALSH M J, HEWITT R, et al. Low-dose treatment with polybrominated diphenyl ethers (PBDEs) induce altered characteristics in MCF-7 cells[J]. Mutagenesis, 2006, 21(5):351-360.
    [81] SU G, ZHANG X, LIU H, et al. Toxicogenomic mechanisms of 6-HO-BDE-47, 6-MeO-BDE-47, and BDE-47 in E. coli[J]. Environmental Science and Technology, 2012, 46(2):1185-1191.
    [82] CADE S E, KUO L J, SCHULTZ I R. Polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in seafood obtained from Puget Sound, WA[J]. Science of the Total Environment, 2018, 630:1149-1154.
    [83] NOMIYAMA K, TAKAGUCHI K, MIZUKAWA H, et al. Species- and tissue-specific profiles of polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in cats and dogs[J]. Environmental Science and Technology, 2017, 51(10):5811-5819.
    [84] KOJIMA H, TAKEUCHI S, URAMARU N, et al. Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells[J]. Environmental Health Perspectives, 2009, 117(8):1210-1218.
    [85] ERMILOVA I, STENBERG S, LYUBARTSEV A P. Quantum chemical and molecular dynamics modelling of hydroxylated polybrominated diphenyl ethers[J]. Physical Chemistry Chemical Physics, 2017, 19(41):28263-28274.
    [86] SAQUIB Q, SIDDIQUI M A, AHMAD J, et al. 6-OHBDE-47 induces transcriptomic alterations of CYP1A1, XRCC2, HSPA1A, EGR1 genes and trigger apoptosis in HepG2 cells[J]. Toxicology, 2018, 400-401:40-47.
    [87] JONSSON M E, MATTSSON A, SHAIK S, et al. Toxicity and cytochrome P4501A mRNA induction by 6-formylindolo[3,2-b]carbazole (FICZ) in chicken and Japanese quail embryos[J]. Comparative Biochemistry and Physiology, Part C:Toxicology & Pharmacology, 2016, 179:125-136.
    [88] SU G, YU H, LAM M H, et al. Mechanisms of toxicity of hydroxylated polybrominated diphenyl ethers (HO-PBDEs) determined by toxicogenomic analysis with a live cell array coupled with mutagenesis in Escherichia coli[J]. Environmental Science and Technology, 2014, 48(10):5929-5937.
    [89] SONG R, DUARTE T L, ALMEIDA G M, et al. Cytotoxicity and gene expression profiling of two hydroxylated polybrominated diphenyl ethers in human H295R adrenocortical carcinoma cells[J]. Toxicology Letters, 2009, 185(1):23-31.
  • 加载中
计量
  • 文章访问数:  1821
  • HTML全文浏览数:  1821
  • PDF下载数:  68
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-29
  • 刊出日期:  2020-01-01

多溴联苯醚对芳香烃受体的激活作用及其介导毒性的研究进展

    通讯作者: 王献, E-mail: xwang27@mail.scuec.edu.cn
  • 中南民族大学化学与材料科学学院, 分析化学国家民委重点实验室, 武汉, 430074
基金项目:

国家自然科学基金(21675176)资助.

摘要: 多溴联苯醚(polybrominated diphenyl ethers,PBDEs)是一类全球广泛存在的有机污染物,由于具有环境持久性,远距离传输,生物可累积性及对生物和人体有毒害效应等特性,是当前环境科学的热点研究对象之一.PBDEs的毒性包括生殖毒性、神经毒性、内分泌干扰、DNA损伤、免疫影响等,对人类以及环境具有潜在的威胁.芳香烃受体(aryl hydrocarbon receptor,AhR)是一种配体激活转录因子,诱导许多编码药物代谢酶的基因,可以被二噁英强效激活并引发一系列毒性.PBDEs具有与二噁英相似的结构,而被认为是一种潜在的AhR配体,但是PBDEs通过AhR介导的毒性机理仍然不明确.本文介绍和讨论了近10多年来PBDEs对AhR激活作用的研究,以及诱导的基因表达和毒性效应.虽然各文献的研究手段以及结论不尽相同,大多数研究表明大部分PBDEs对AhR的激活效果较为微弱,但仍有些PBDE需要引起重视.例如,BDE-126在大鼠肝细胞中的激活作用比其同系物更为突出,BDE-99可以激活斑马鱼胚胎中的AhR.此外,大多数羟基化或甲氧基化多溴联苯醚在家禽胚胎肝细胞、大鼠肝癌细胞中可以激活AhR,且可能比PBDEs具有更高的毒性和生物积累性.

English Abstract

参考文献 (89)

目录

/

返回文章
返回