Ce-Mn复合氧化物对As(V)的吸附行为与机制
Adsorption of As (V) on Ce-Mn binary oxide:Behavior and mechanism
-
摘要: 采用氧化共沉淀法制备了新型Ce-Mn复合氧化物吸附剂,通过批式实验,系统地研究了其对As(V)的吸附行为,并采用FTIR、XPS等表征技术研究了其对As(V)的吸附机制.研究结果表明,随着Mn的引入,铈锰复合氧化物对As(V)的吸附产生了协同效应,对As(V)的吸附容量显著高于单一组分的CeO2与MnO2,尤其当Ce/Mn摩尔比为3:1时;As(V)吸附速率较快,4 h吸附量达平衡吸附量的90.8%;吸附剂对As(V)具有较高的吸附容量,且酸性条件有利于As(V)的吸附,在pH 5.0、7.0、9.0时最大吸附容量分别为77.8、63.5、39.0 mg·g-1;Freundlich模型能较好地拟合其对As(V)的吸附过程,离子强度对As(V)的吸附影响不大,溶液中PO43-与SiO32-对As(V)吸附存在竞争作用,Ca2+与Mg2+则有助于促进As(V)吸附.机制研究结果表明,As(V)主要通过在Ce-Mn复合金属氧化物表面形成单齿单核和双齿双核的内层配合物而从溶液去除.
-
关键词:
- Ce-Mn复合金属氧化物 /
- As(V) /
- 吸附 /
- 机制
Abstract: A novel Ce-Mn binary oxide adsorbent was synthesized via oxidation and co-precipitation method. As(V) adsorption behavior on Ce-Mn bimetal oxide was systematically investigated by batch experiments. As(V) adsorption mechanism was studied using FTIR and XPS techniques. The results indicated that the introduction of manganese oxides into CeO2 emerged a synergistic effect on As(V) adsorption, which was evidently proved by the much higher adsorption capacity of Ce-Mn bimetal oxide than that of the pure CeO2 and MnO2, especially at the Ce/Mn molar ratio of 3:1. The adsorption of As(V) was relatively fast and over 90.8% of the equilibrium adsorption capacity was obtained within 4 h. Ce-Mn bimetal oxide had good performance for As(V) adsorption, especially under acidic conditions. The maximum adsorption capacity was 77.8, 63.5 and 39.0 mg·g-1 at pH 5.0, 7.0 and 9.0, respectively. Freundlich model was more suitable to describe the adsorption isotherm data. The ionic strength had little influence on the adsorption. The coexisting anions PO43- and SiO32- inhibited As(V) adsorption, whereas the cations Ca2+ and Mg2+ slightly enhanced As(V) adsorption. Mechanism investigations suggested that As(V) was probably removed from the solution by forming monodentate mononuclear and didentate dinuclear complexes on the surface of Ce-Mn bimetal oxide.-
Key words:
- Ce-Mn binary oxide /
- As(V) /
- adsorption /
- mechanism
-
-
[1] MANDAL B K, SUZUKI K T. Arsenic round the world:A review[J]. Talanta, 2002,58(1):201-235. [2] AHMAD A, BHATTACHARYA P. Environmental arsenic in a changing world[J]. Groundwater for Sustainable Development, 2019,8:169-171. [3] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002,17(5):517-568. [4] UPPAL J S, ZHENG Q, LE X C. Arsenic in drinking water-recent examples and updates from Southeast Asia[J]. Current Opinion in Environmental Science & Health, 2019,7:126-135. [5] MOHAMMED ABDUL K S, JAYASINGHE S S, CHANDANA E P S, et al. Arsenic and human health effects:A review[J]. Environmental Toxicology and Pharmacology, 2015,40(3):828-846. [6] 陈桂霞, 胡承志, 朱灵峰, 等. 铝盐混凝除砷影响因素及机制研究[J]. 环境科学, 2013,34(4):1386-1391. CHEN G X, HU C Z, ZHU L F, et al. Influencing factors and mechanism of arsenic removal during the aluminum coagulation process[J]. Environmental Science, 2013,34(4):1386-1391(in Chinese).
[7] 曾辉平, 吕赛赛, 杨航, 等. 铁锰泥除砷颗粒吸附剂对As(V)的吸附去除[J]. 环境科学, 2018,39(1):170-178. ZENG H P, LV S S, YANG H, et al. Arsenic(V) removal by granular adsorbents made from backwashing residuals from biofilters for iron and manganese removal[J]. Environmental Science, 2018,39(1):170-178(in Chinese).
[8] LEE C G, ALVAREZ P J J, NAM A, et al. Arsenic(V) removal using an amine-doped acrylic ion exchange fiber:Kinetic, equilibrium, and regeneration studies[J]. Journal of Hazardous Materials, 2017,325:223-229. [9] 席北斗, 王晓伟, 霍守亮, 等. 纳滤膜技术在地下水除砷应用中的研究进展[J]. 环境工程学报, 2012,6(2):353-360. XI B D, WANG X W, HUO S L, et al. Investigation progress of arsenic removal from groundwater by nanofiltration membrane technology[J]. Chinese Journal of Environmental Engineering, 2012,6(2):353-360(in Chinese).
[10] ZHANG W, FU J, ZHANG G S, et al. Enhanced arsenate removal by novel Fe-La composite (hydr)oxides synthesized via coprecipitation[J]. Chemical Engineering Journal, 2014,251:69-79. [11] 李蕊, 豆小敏, 韩海荣, 等. 零价铁/炭去除水中的As(V)[J]. 环境化学, 2010,29(4):669-674. LI R, DOU X M, HAN H R, et al. Arsenate removal by zero valent iron/carbon couples[J]. Environmental Chemistry, 2010,29(4):669-674(in Chinese).
[12] AHMARUZZAMAN M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals[J]. Advances in Colloid and Interface Science, 2011,166(1):36-59. [13] SASAKI T, IIZUKA A, WATANABE M, et al. Preparation and performance of arsenate (V) adsorbents derived from concrete wastes[J]. Waste Management, 2014,34(10):1829-1835. [14] SONI R, SHUKLA D P. Synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal[J]. Chemosphere, 2019,219:504-509. [15] PARK J H, HAN Y S, AHN J S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream[J]. Water Research, 2016,106:295-303. [16] LATA S, SAMADDER S R. Removal of arsenic from water using nano adsorbents and challenges:A review[J]. Journal of Environmental Management, 2016,166:387-406. [17] ZHANG G S, REN Z M, ZHANG X W, et al. Nanostructured iron(Ⅲ)-copper(Ⅱ) binary oxide:A novel adsorbent for enhanced arsenic removal from aqueous solutions[J]. Water Research, 2013,47(12):4022-4031. [18] ZHANG Y, YANG M, DOU X M, et al. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent:Role of surface properties[J]. Environmental Science & Technology, 2005,39(18):7246-7253. [19] LI Z J, DENG S B, YU G, et al. As(V) and As(Ⅲ) removal from water by a Ce-Ti oxide adsorbent:Behavior and mechanism[J]. Chemical Engineering Journal, 2010,161(1):106-113. [20] ZHANG G S, LIU H J, LIU R P, et al. Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface[J]. Journal of Hazardous Materials, 2009,168(2):820-825. [21] LIU T, WU K, XUE W, et al. Characteristics and mechanisms of arsenate adsorption onto manganese oxide-doped aluminum oxide[J]. Environmental Progress & Sustainable Energy, 2015,34(4):1009-1018. [22] CHEN J, WANG J Y, ZHANG G S, et al. Facile fabrication of nanostructured cerium-manganese binary oxide for enhanced arsenite removal from water[J]. Chemical Engineering Journal, 2018,334:1518-1526. [23] DENG S B, LI Z J, HUANG J, et al. Preparation, characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water[J]. Journal of Hazardous Materials, 2010,179(1):1014-1021. [24] TAUJALE S, ZHANG H C. Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide[J]. Environmental Science & Technology, 2012,46(5):2764-2771. [25] ZHU J, BAIG S A, SHENG T T, et al. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions[J]. Journal of Hazardous Materials, 2015,286:220-228. [26] ZHANG G S, QU J H, LIU H J, et al. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal[J]. Water Research, 2007,41(9):1921-1928. [27] ZHANG G S, KHORSHED A, PAUL CHEN J. Simultaneous removal of arsenate and arsenite by a nanostructured zirconium-manganese binary hydrous oxide:Behavior and mechanism[J]. Journal of Colloid and Interface Science, 2013,397:137-143. [28] SAHU U K, SAHU M K, MOHAPATRA S S, et al. Removal of As(V) from aqueous solution by Ce-Fe bimetal mixed oxide[J]. Journal of Environmental Chemical Engineering, 2016,4(3):2892-2899. [29] HO Y S, MCKAY G. Kinetic model for lead(Ⅱ) sorption on to peat[J]. Adsorption Science & Technology, 1998,16(4):243-255. [30] MCBRIDE M B. A critique of diffuse double layer models applied to colloid and surface chemistry[J]. Clays and Clay Minerals, 1997(4):598-608. [31] GUPTA K, GHOSH U C. Arsenic removal using hydrous nanostructure iron(Ⅲ)-titanium(IV) binary mixed oxide from aqueous solution[J]. Journal of Hazardous Materials, 2009,161(2):884-892. [32] 付军, 范芳, 李海宁, 等. 铁锰复合氧化物/壳聚糖珠:一种环境友好型除磷吸附剂[J]. 环境科学, 2016,37(12):4882-4890. FU J, FAN F, LI H N, et al. Fe-Mn binary oxide impregnated chitosan bead (FMCB):An environmental friendly sorbent for phosphate removal[J]. Environmental Science, 2016,37(12):4882-4890(in Chinese).
[33] 张伟, 陈静, 张高生. 铁镧复合氧化物纳米吸附剂的制备、表征及As(Ⅲ)吸附性能研究[J]. 环境科学, 2014,35(11):4198-4204. ZHANG W, CHEN J, ZHANG G S. Preparation and evaluation of Fe-La composite oxide nanoadsorbent for As(Ⅲ) removal from aqueous Solutions[J]. Environmental Science, 2014,35(11):4198-4204(in Chinese).
[34] 杨雪, 陈静, 李秋梅, 等. 新型铁铜铝三元复合氧化物除磷性能与机制研究[J]. 环境科学学报, 2018,38(2):501-510. YANG X, CHEN J, LI Q M, et al. The adsorption of phosphate on a novel Fe-Cu-Al trimetal oxide:Behavior and mechanism[J]. Acta Scientiae Circumstantiae,2018, 38(2):501-510(in Chinese).
[35] REN Z M, ZHANG G S, PAUL CHEN J. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent[J]. Journal of Colloid and Interface Science, 2011,358(1):230-237. [36] HSIA T, LO S L, LIN C F, et al. Characterization of arsenate adsorption on hydrous iron oxide using chemical and physical methods[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1994,85(1):1-7. [37] GUO H C, LI W J, WANG H Y, et al. A study of phosphate adsorption by different temperature treated hydrous cerium oxides[J]. Rare Metals, 2011,30(1):58-62. [38] LI G L, GAO S, ZHANG G S, et al. Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(Ⅲ)-copper(Ⅱ) binary oxides[J]. Chemical Engineering Journal, 2014,235:124-131. [39] LEFèVRE G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides[J]. Advances in Colloid and Interface Science, 2004,107(2):109-123. [40] 吴秋月, 陈静, 张伟, 等. 新型纳米结构铈锰复合氧化物的磷吸附行为与机制研究[J]. 环境科学学报, 2015,35(6):1824-1832. WU Q Y, CHEN J, ZHANG W, et al. Adsorption of phosphate on a novel nanostructured Ce-Mn binary oxide:Behavior and mechanism[J]. Acta Scientiae Circumstantiae, 2015,35(6):1824-1832(in Chinese).
[41] MANNING B A, FENDORF S E, BOSTICK B, et al. Arsenic(Ⅲ) oxidation and arsenic(V) adsorption reactions on synthetic birnessite[J]. Environmental Science & Technology, 2002,36(5):976-981. -

计量
- 文章访问数: 1714
- HTML全文浏览数: 1714
- PDF下载数: 31
- 施引文献: 0