颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能
Study on adsorption and removal efficiency of granular activated carbon for cyanide in groundwater contaminated by tailings
-
摘要: 对4种材质的颗粒活性炭去除污染地下水中氰化物的效能进行了评估,筛选出具有高效去除氰化物能力的松木质颗粒活性炭(SW-AC),揭示了SW-AC的结构特征,开展了SW-AC在不同吸附时间、反应温度、活性炭投加量和共存阴离子条件下的吸附试验,并进行了吸附动力学规律探讨和吸附等温线拟合.结果表明,SW-AC投加量为4.0 g时,0—1 h为快速反应阶段,反应3 h后达到吸附平衡,若增加其投加量,达到吸附平衡所需反应时间越短.反应温度(10—30℃)越高,SW-AC投加量越大,SW-AC对氰化物的吸附率越大.而地下水中的共存阴离子CO32-、SO42-、Cl-对吸附氰化物起抑制作用,且离子浓度越高,抑制作用越大.SW-AC对水中氰化物的吸附过程较好符合Elovich模型(R2>0.99)和Freundlich模型(R2>0.94).Abstract: The effectiveness of four types of granular activated carbon to remove cyanide in groundwater was evaluated, and pine wood granular activated carbon (SW-AC) with high cyanide removal ability was selected, revealing the SW-AC structural features. The adsorption experiments of SW-AC under different adsorption time, reaction temperature, activated carbon dosage and coexisting anions were carried out, and the adsorption kinetics law and adsorption isotherm fitting were carried out. The results showed that when the dosage was 4.0 g, 0—1 h was the rapid reaction stage, and the adsorption equilibrium was reached after 3 hours of reaction. If the SW-AC dosage was increased, the shorter the reaction time required to reach the adsorption equilibrium. The higher the reaction temperature (10—30 ℃), the greater the dosage of SW-AC, the greater the adsorption rate of SW-AC to cyanide. The coexisting anions CO32-, SO42-, and Cl- in groundwater inhibited the adsorption of cyanide, and the higher the ion concentration, the greater the inhibition. The adsorption process of cyanide in water by SW-AC fit well with the Elovich model (R2>0.99) and Freundlich model (R2>0.94).
-
Key words:
- Groundwater /
- cyanide /
- activated carbon /
- adsorption /
- tailings
-
-
[1] 陈江安, 周丹, 邱廷省, 等. 氰化尾渣制备微电解填料及降解甲基橙研究[J]. 中国环境科学, 2018, 38(10):3808-3814. CHENG J A, ZHOU Y, QIU Y S, et al. Synthesis of micro-electrolysis filter from cyanide tailings through direct reduction process and its application for degradation of methyl orange[J]. China Environmental Science, 2018, 38(10):3808-3814(in Chinese).
[2] 闫晓慧, 李桂春, 孟齐. 金矿中提金技术的研究进展[J]. 应用化工, 2019, 48(11):2719-2723. YAN X H, LIU G C, MENG Q. Research progress of gold extraction technology in gold deposits[J]. Applied Chemical Industry, 2019, 48(11):2719-2723(in Chinese).
[3] 李婷, 尹艳芬, 方夕辉, 等. 从金氰化尾渣中回收铜、铅、锌、硫的工艺技术现状[J]. 现代矿业, 2011, 27(4):28-29. LI T, YIN Y F, FANG X H, et al. Technological status of recovering copper, lead, zinc, sulfur from gold cyaniding tailings[J]. Modern Mining, 2011, 27(4):28-29(in Chinese).
[4] 孙留根, 常耀超, 徐晓辉, 等. 氰化尾渣无害化、资源化利用的主要技术现状及发展趋势[J]. 中国资源综合利用, 2017, 35(10):59-62. SUN L G, CHANG Y C, XU H H, et al. The main technology status and development trend of harmless and resourceful utilization of cyanide tailings[J]. China Resources Comprehensive Utilization, 2017, 35(10):59-62(in Chinese).
[5] 张越. 尾矿库淋溶机理及渗滤液处理措施[J]. 山西化工, 2018, 38(4):210-212. ZHANG Y. Leaching mechanism of tailings pond and leachate treatment measures[J]. Shanxi Chemical Industry, 2018, 38(4):210-212(in Chinese).
[6] ABRAHAM K, BUHRKE T, LAMPEN A. Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides:A crossover study in humans[J]. Archives of Toxicology, 2016, 90(3):559-574. [7] WILKIN R T, SU C, FORD R G, et al. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier.[J]. Environmental Sciences & Technology, 2005, 39(12):4599-4605. [8] 蒲敏. 污染场地地下水抽出处理技术研究[J]. 环境工程, 2017, 35(4):6-10. PU M, Review on groundwater contaminants control and remediation technology:Rump and treat[J]. Environmental Engineering, 2017, 35(4):6-10(in Chinese).
[9] OCONNOR D, HOU D, OK Y S, et al. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials:A review[J]. Journal of Controlled Release, 2018, 283:200-213. [10] OBIRI-NYARKO F, GRAJALES-MESA S J, MALINA G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111:243-259. [11] MACKENZIE P D, HORNEY D P, SIVAVEC T M, et al. Mineral precipitation and porosity losses in granular iron columns[J]. Journal of Hazardous Materials, 1999, 68(1):1-17. [12] NARDO A D, ERTO A, BROTONE I, et al. Permeable reactive barrier for groundwater PCE remediation:The case study of a solid waste landfill pollution[J]. Computer Aided Chemical Engineering, 2010, 28:1015-1020. [13] CONCA J, STRIETELMEIER E, LU N P, et al. Treatability study of reactive materials to remediate groundwater contaminated with radionuclides, metals, and nitrates in a four-component permeable reactive barrier[M]. New York:Academic Press, 2002:221-252. [14] PARK J B, LEE S H, LEE J W, et al. Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B)[J]. Journal of Hazardous Materials, 2002, 95(1/2):65-79. [15] FULLER C C, PIANA M J, BARGAR J R, et al. Evaluation of apatite materials for use in permeable reactive barriers for the remediation of uranium-contaminated groundwater[M]. San Diego:Academic Press, 2003:255-280. [16] POLLARD S J T, FOWLER G D, SOLLARS C J, et al. Low-cost adsorbents for waste and wastewater treatment:A review[J]. Science of the total environment, 1992, 116(1/2):31-52. [17] RATTANACHUESKUL N, SANING A, KAOWPHONG S, et al. Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process[J]. Bioresource Technology, 2017, 226:164-172. [18] SPOSITO G. Derivation of the langmuir equation for ion exchange reactions in soils[J]. Soil Science Society of America Journal, 1979, 43(1):652-654. [19] FREUNDLICH H. Uber die adsorption in losungen[J]. Zeitschrift für Physikalische Chemie, 1906, 57(1):385-470. [20] 邢明超, 谢强, 陈守慧, 等. 单层硅烷负载磁铁矿纳米颗粒的制备及除磷性能[J]. 环境科学, 2019, 40(1):310-317. XING M C, XIE Q, CHENG S H, et al. Preparation of the silane monolayer on magnetite nanoparticles and its performance with respect to phosphate removal from water[J]. Environmental Science, 2019, 40(1):310-317(in Chinese).
[21] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & Applied Chemistry, 1985,57(4):603-619. [22] WANG Q R, ZHENG C L, SHEN Z X, et al. Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water[J]. Chemical Engineering Journal, 2019, 359:265-274. [23] AGARWAL B, THAKUR P K, BALOMAJUMDER C, et al. Use of iron-impregnated granular activated carbon for co-adsorptive removal of phenpl and cyanide:Insight into Equilibrium and Kinetics[J]. Chemical Engineering Communications, 2013, 200(9):1278-1292. [24] ALQADAMI A A, NAUSHAD M, ALOTHMAN Z A, et al. Excellent adsorptive performance of a new nanocomposite for removal of toxic Pb(II) from aqueous environment:Adsorption mechanism and modeling analysis[J]. Journal of Hazardous Materials, 2020, 389:121896. [25] CAZETTA A L, PEZOTI O, BEDIN K C, et al. Magnetic activated carbon derived from biomass waste by concurrent synthesis:Efficient adsorbent for toxic dyes[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3):1058-1068. [26] ALZAYDIEN A S. Adsorption of methylene blue from aqueous solution onto a low-cost natural jordanian tripoli[J]. American Journal of Environmental Sciences, 2009, 5(3):1047-1058. [27] TSUNATU D Y, TAURA U H, JIRAH E U. Kinetic studies of bio-sorption of cyanide ions from aqueous solution using carbon black developed from shea butter seed husk as an adsorbent[J]. American Chemical Science Journal, 2015, 8(2):1-12. [28] KIRISITS M J, SNOEYINK V L, KRUITHOF J C, et al. The reduction of bromate by granular activated carbon[J]. Water Research, 2000, 34(17):4250-4260. [29] CANIZARES P, CARMONA M, BARAZA O, et al. Adsorption equilibrium of phenol onto chemically modified activated carbon F400[J]. Journal of Hazardous Materials, 2006, 131(1/3):243-248. [30] SWAMY M M. Studies on the treatment of phenolic wastewaters using adsorption and immobilized whole cells[D]. Roorkee:University of Roorkee, 1998. [31] GUO R D, CHAKRABARTI C L, SUBRAMANIAN K S, et al. Sorption of low levels of cyanide by granular activated carbon[J]. Water Environment Research, 1993, 65(5):640-644. [32] AGARWAL B, BALOMAJUMDER C, THAKUR P K. Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon[J]. Chemical Engineering Journal, 2013, 228:655-664. [33] ABBAS H S, MOHAMMED A A, AL-MUSAWI T J. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae[J]. Environmental Science and Pollution Research, 2013, 20(5):3011-3023. -

计量
- 文章访问数: 2003
- HTML全文浏览数: 2003
- PDF下载数: 40
- 施引文献: 0