颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能

刘华秋, 付融冰, 温东东, 许大毛. 颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能[J]. 环境化学, 2020, (12): 3531-3541. doi: 10.7524/j.issn.0254-6108.2020070106
引用本文: 刘华秋, 付融冰, 温东东, 许大毛. 颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能[J]. 环境化学, 2020, (12): 3531-3541. doi: 10.7524/j.issn.0254-6108.2020070106
LIU Huaqiu, FU Rongbing, WEN Dongdong, XU Damao. Study on adsorption and removal efficiency of granular activated carbon for cyanide in groundwater contaminated by tailings[J]. Environmental Chemistry, 2020, (12): 3531-3541. doi: 10.7524/j.issn.0254-6108.2020070106
Citation: LIU Huaqiu, FU Rongbing, WEN Dongdong, XU Damao. Study on adsorption and removal efficiency of granular activated carbon for cyanide in groundwater contaminated by tailings[J]. Environmental Chemistry, 2020, (12): 3531-3541. doi: 10.7524/j.issn.0254-6108.2020070106

颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能

    通讯作者: 付融冰, E-mail: furongbing@tongji.edu.cn
  • 基金项目:

    上海科委项目(20dz1204502)资助.

Study on adsorption and removal efficiency of granular activated carbon for cyanide in groundwater contaminated by tailings

    Corresponding author: FU Rongbing, furongbing@tongji.edu.cn
  • Fund Project: Supported by the Project of Science and Technology Commission of Shanghai Municipality (20dz1204502).
  • 摘要: 对4种材质的颗粒活性炭去除污染地下水中氰化物的效能进行了评估,筛选出具有高效去除氰化物能力的松木质颗粒活性炭(SW-AC),揭示了SW-AC的结构特征,开展了SW-AC在不同吸附时间、反应温度、活性炭投加量和共存阴离子条件下的吸附试验,并进行了吸附动力学规律探讨和吸附等温线拟合.结果表明,SW-AC投加量为4.0 g时,0—1 h为快速反应阶段,反应3 h后达到吸附平衡,若增加其投加量,达到吸附平衡所需反应时间越短.反应温度(10—30℃)越高,SW-AC投加量越大,SW-AC对氰化物的吸附率越大.而地下水中的共存阴离子CO32-、SO42-、Cl-对吸附氰化物起抑制作用,且离子浓度越高,抑制作用越大.SW-AC对水中氰化物的吸附过程较好符合Elovich模型(R2>0.99)和Freundlich模型(R2>0.94).
  • 加载中
  • [1] 陈江安, 周丹, 邱廷省, 等. 氰化尾渣制备微电解填料及降解甲基橙研究[J]. 中国环境科学, 2018, 38(10):3808-3814.

    CHENG J A, ZHOU Y, QIU Y S, et al. Synthesis of micro-electrolysis filter from cyanide tailings through direct reduction process and its application for degradation of methyl orange[J]. China Environmental Science, 2018, 38(10):3808-3814(in Chinese).

    [2] 闫晓慧, 李桂春, 孟齐. 金矿中提金技术的研究进展[J]. 应用化工, 2019, 48(11):2719-2723.

    YAN X H, LIU G C, MENG Q. Research progress of gold extraction technology in gold deposits[J]. Applied Chemical Industry, 2019, 48(11):2719-2723(in Chinese).

    [3] 李婷, 尹艳芬, 方夕辉, 等. 从金氰化尾渣中回收铜、铅、锌、硫的工艺技术现状[J]. 现代矿业, 2011, 27(4):28-29.

    LI T, YIN Y F, FANG X H, et al. Technological status of recovering copper, lead, zinc, sulfur from gold cyaniding tailings[J]. Modern Mining, 2011, 27(4):28-29(in Chinese).

    [4] 孙留根, 常耀超, 徐晓辉, 等. 氰化尾渣无害化、资源化利用的主要技术现状及发展趋势[J]. 中国资源综合利用, 2017, 35(10):59-62.

    SUN L G, CHANG Y C, XU H H, et al. The main technology status and development trend of harmless and resourceful utilization of cyanide tailings[J]. China Resources Comprehensive Utilization, 2017, 35(10):59-62(in Chinese).

    [5] 张越. 尾矿库淋溶机理及渗滤液处理措施[J]. 山西化工, 2018, 38(4):210-212.

    ZHANG Y. Leaching mechanism of tailings pond and leachate treatment measures[J]. Shanxi Chemical Industry, 2018, 38(4):210-212(in Chinese).

    [6] ABRAHAM K, BUHRKE T, LAMPEN A. Bioavailability of cyanide after consumption of a single meal of foods containing high levels of cyanogenic glycosides:A crossover study in humans[J]. Archives of Toxicology, 2016, 90(3):559-574.
    [7] WILKIN R T, SU C, FORD R G, et al. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier.[J]. Environmental Sciences & Technology, 2005, 39(12):4599-4605.
    [8] 蒲敏. 污染场地地下水抽出处理技术研究[J]. 环境工程, 2017, 35(4):6-10.

    PU M, Review on groundwater contaminants control and remediation technology:Rump and treat[J]. Environmental Engineering, 2017, 35(4):6-10(in Chinese).

    [9] OCONNOR D, HOU D, OK Y S, et al. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials:A review[J]. Journal of Controlled Release, 2018, 283:200-213.
    [10] OBIRI-NYARKO F, GRAJALES-MESA S J, MALINA G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111:243-259.
    [11] MACKENZIE P D, HORNEY D P, SIVAVEC T M, et al. Mineral precipitation and porosity losses in granular iron columns[J]. Journal of Hazardous Materials, 1999, 68(1):1-17.
    [12] NARDO A D, ERTO A, BROTONE I, et al. Permeable reactive barrier for groundwater PCE remediation:The case study of a solid waste landfill pollution[J]. Computer Aided Chemical Engineering, 2010, 28:1015-1020.
    [13] CONCA J, STRIETELMEIER E, LU N P, et al. Treatability study of reactive materials to remediate groundwater contaminated with radionuclides, metals, and nitrates in a four-component permeable reactive barrier[M]. New York:Academic Press, 2002:221-252.
    [14] PARK J B, LEE S H, LEE J W, et al. Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B)[J]. Journal of Hazardous Materials, 2002, 95(1/2):65-79.
    [15] FULLER C C, PIANA M J, BARGAR J R, et al. Evaluation of apatite materials for use in permeable reactive barriers for the remediation of uranium-contaminated groundwater[M]. San Diego:Academic Press, 2003:255-280.
    [16] POLLARD S J T, FOWLER G D, SOLLARS C J, et al. Low-cost adsorbents for waste and wastewater treatment:A review[J]. Science of the total environment, 1992, 116(1/2):31-52.
    [17] RATTANACHUESKUL N, SANING A, KAOWPHONG S, et al. Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process[J]. Bioresource Technology, 2017, 226:164-172.
    [18] SPOSITO G. Derivation of the langmuir equation for ion exchange reactions in soils[J]. Soil Science Society of America Journal, 1979, 43(1):652-654.
    [19] FREUNDLICH H. Uber die adsorption in losungen[J]. Zeitschrift für Physikalische Chemie, 1906, 57(1):385-470.
    [20] 邢明超, 谢强, 陈守慧, 等. 单层硅烷负载磁铁矿纳米颗粒的制备及除磷性能[J]. 环境科学, 2019, 40(1):310-317.

    XING M C, XIE Q, CHENG S H, et al. Preparation of the silane monolayer on magnetite nanoparticles and its performance with respect to phosphate removal from water[J]. Environmental Science, 2019, 40(1):310-317(in Chinese).

    [21] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & Applied Chemistry, 1985,57(4):603-619.
    [22] WANG Q R, ZHENG C L, SHEN Z X, et al. Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water[J]. Chemical Engineering Journal, 2019, 359:265-274.
    [23] AGARWAL B, THAKUR P K, BALOMAJUMDER C, et al. Use of iron-impregnated granular activated carbon for co-adsorptive removal of phenpl and cyanide:Insight into Equilibrium and Kinetics[J]. Chemical Engineering Communications, 2013, 200(9):1278-1292.
    [24] ALQADAMI A A, NAUSHAD M, ALOTHMAN Z A, et al. Excellent adsorptive performance of a new nanocomposite for removal of toxic Pb(II) from aqueous environment:Adsorption mechanism and modeling analysis[J]. Journal of Hazardous Materials, 2020, 389:121896.
    [25] CAZETTA A L, PEZOTI O, BEDIN K C, et al. Magnetic activated carbon derived from biomass waste by concurrent synthesis:Efficient adsorbent for toxic dyes[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3):1058-1068.
    [26] ALZAYDIEN A S. Adsorption of methylene blue from aqueous solution onto a low-cost natural jordanian tripoli[J]. American Journal of Environmental Sciences, 2009, 5(3):1047-1058.
    [27] TSUNATU D Y, TAURA U H, JIRAH E U. Kinetic studies of bio-sorption of cyanide ions from aqueous solution using carbon black developed from shea butter seed husk as an adsorbent[J]. American Chemical Science Journal, 2015, 8(2):1-12.
    [28] KIRISITS M J, SNOEYINK V L, KRUITHOF J C, et al. The reduction of bromate by granular activated carbon[J]. Water Research, 2000, 34(17):4250-4260.
    [29] CANIZARES P, CARMONA M, BARAZA O, et al. Adsorption equilibrium of phenol onto chemically modified activated carbon F400[J]. Journal of Hazardous Materials, 2006, 131(1/3):243-248.
    [30] SWAMY M M. Studies on the treatment of phenolic wastewaters using adsorption and immobilized whole cells[D]. Roorkee:University of Roorkee, 1998.
    [31] GUO R D, CHAKRABARTI C L, SUBRAMANIAN K S, et al. Sorption of low levels of cyanide by granular activated carbon[J]. Water Environment Research, 1993, 65(5):640-644.
    [32] AGARWAL B, BALOMAJUMDER C, THAKUR P K. Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon[J]. Chemical Engineering Journal, 2013, 228:655-664.
    [33] ABBAS H S, MOHAMMED A A, AL-MUSAWI T J. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae[J]. Environmental Science and Pollution Research, 2013, 20(5):3011-3023.
  • 加载中
计量
  • 文章访问数:  2003
  • HTML全文浏览数:  2003
  • PDF下载数:  40
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-07-01
刘华秋, 付融冰, 温东东, 许大毛. 颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能[J]. 环境化学, 2020, (12): 3531-3541. doi: 10.7524/j.issn.0254-6108.2020070106
引用本文: 刘华秋, 付融冰, 温东东, 许大毛. 颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能[J]. 环境化学, 2020, (12): 3531-3541. doi: 10.7524/j.issn.0254-6108.2020070106
LIU Huaqiu, FU Rongbing, WEN Dongdong, XU Damao. Study on adsorption and removal efficiency of granular activated carbon for cyanide in groundwater contaminated by tailings[J]. Environmental Chemistry, 2020, (12): 3531-3541. doi: 10.7524/j.issn.0254-6108.2020070106
Citation: LIU Huaqiu, FU Rongbing, WEN Dongdong, XU Damao. Study on adsorption and removal efficiency of granular activated carbon for cyanide in groundwater contaminated by tailings[J]. Environmental Chemistry, 2020, (12): 3531-3541. doi: 10.7524/j.issn.0254-6108.2020070106

颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能

    通讯作者: 付融冰, E-mail: furongbing@tongji.edu.cn
  • 同济大学环境科学与工程学院, 土壤及地下水环境风险管控与修复中心, 上海, 200092
基金项目:

上海科委项目(20dz1204502)资助.

摘要: 对4种材质的颗粒活性炭去除污染地下水中氰化物的效能进行了评估,筛选出具有高效去除氰化物能力的松木质颗粒活性炭(SW-AC),揭示了SW-AC的结构特征,开展了SW-AC在不同吸附时间、反应温度、活性炭投加量和共存阴离子条件下的吸附试验,并进行了吸附动力学规律探讨和吸附等温线拟合.结果表明,SW-AC投加量为4.0 g时,0—1 h为快速反应阶段,反应3 h后达到吸附平衡,若增加其投加量,达到吸附平衡所需反应时间越短.反应温度(10—30℃)越高,SW-AC投加量越大,SW-AC对氰化物的吸附率越大.而地下水中的共存阴离子CO32-、SO42-、Cl-对吸附氰化物起抑制作用,且离子浓度越高,抑制作用越大.SW-AC对水中氰化物的吸附过程较好符合Elovich模型(R2>0.99)和Freundlich模型(R2>0.94).

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回