太湖周边饮用水处理厂中抗生素抗性基因污染分布特征

赵婉婷, 黄智峰, 郭雪萍, 徐挺, 尹大强. 太湖周边饮用水处理厂中抗生素抗性基因污染分布特征[J]. 环境化学, 2020, (12): 3271-3278. doi: 10.7524/j.issn.0254-6108.2019091502
引用本文: 赵婉婷, 黄智峰, 郭雪萍, 徐挺, 尹大强. 太湖周边饮用水处理厂中抗生素抗性基因污染分布特征[J]. 环境化学, 2020, (12): 3271-3278. doi: 10.7524/j.issn.0254-6108.2019091502
ZHAO Wanting, HUANG Zhifeng, GUO Xueping, XU Ting, YIN Daqiang. Pollution and distribution characteristics of antibiotic resistance genes in drinking water treatment plants around Taihu Lake[J]. Environmental Chemistry, 2020, (12): 3271-3278. doi: 10.7524/j.issn.0254-6108.2019091502
Citation: ZHAO Wanting, HUANG Zhifeng, GUO Xueping, XU Ting, YIN Daqiang. Pollution and distribution characteristics of antibiotic resistance genes in drinking water treatment plants around Taihu Lake[J]. Environmental Chemistry, 2020, (12): 3271-3278. doi: 10.7524/j.issn.0254-6108.2019091502

太湖周边饮用水处理厂中抗生素抗性基因污染分布特征

    通讯作者: 徐挺, E-mail: xuting@tongji.edu.cn 尹大强, E-mail: yindq@tongji.edu.cn
  • 基金项目:

    水体污染控制与治理科技重大专项(2017ZX07201005)资助.

Pollution and distribution characteristics of antibiotic resistance genes in drinking water treatment plants around Taihu Lake

    Corresponding authors: XU Ting, xuting@tongji.edu.cn ;  YIN Daqiang, yindq@tongji.edu.cn
  • Fund Project: Supported by the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07201005).
  • 摘要: 为研究太湖周边不同水源的饮用水处理厂中抗生素抗性基因污染的分布特征,文章采用实时荧光定量PCR法对4个饮用水厂原水中12种ARGs(包括磺胺类sul1、sul2;四环素类tetCtetWβ-内酰胺类blaTEM-1blaOXA-1blaampC;大环内酯类mphAermB;氨基糖苷类strA、aacC4;喹诺酮类qnrS)及Ⅰ类整合酶基因intⅠ1进行定性定量分析.结果表明,sul1、sul2、tetCblaTEM-1blaOXA-1mphAstrAqnrSintⅠ1的检出率均为100%,其中磺胺类抗性基因sul1相对丰度最高(1.68×10-3—6.21×10-2),属于优势抗性基因.在4个水厂原水中,以太湖为水源的B水厂中检出ARGs的种类最多且相对丰度最高,而以长江为水源的D水厂中ARGs相对丰度水平最低.intⅠ1相对丰度和6种抗性基因相对丰度(sul2、tetCblaTEM-1blaOXA-1mphAqnrS)呈显著正相关(P<0.05),说明intⅠ1介导的ARGs水平转移是环境中微生物获得耐药性的重要途径.根据基因丰度检测结果结合水源分析,太湖区域水体ARGs污染水平高于长江下游水体.本研究充分阐明了太湖和长江下游原水中抗生素抗性基因的污染特征,为今后饮用水处理中对抗生素抗性基因的去除提供理论依据和数据支撑.
  • 加载中
  • [1] WRIGHT G D. Antibiotic resistance in the environment:A link to the clinic?[J]. Current Opinion in Microbiology, 2010, 13(5):589-594.
    [2] AMY P, RUOTING P, HEATHER S, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23):7445-7450.
    [3] SALYERS A A, AMáBILECUEVAS C F. Why are antibiotic resistance genes so resistant to elimination?[J]. Antimicrobial Agents & Chemotherapy, 1997, 41(11):2321-2325.
    [4] QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110:160-172.
    [5] DEVARAJAN N, LAFFITE A, GRAHAM N D, et al. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe[J]. Environmental Science & Technology, 2015, 49(11):6528-6537.
    [6] STANGE C, YIN D Q, XU T, et al. Distribution of clinically relevant antibiotic resistance genes in Lake Tai, China[J]. Science of The Total Environment, 2019, 655:337-346.
    [7] XU Y, GUO C S, LUO Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China[J]. Environmental Pollution, 2016, 213:833-840.
    [8] STOLL C, SIDHU J P S, TIEHM A, et al. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from germany and australia[J]. Environmental Science & Technology, 2012, 46(17):9716-9726.
    [9] MA L P, LI B, JIANG X T, et al. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey[J]. Microbiome, 2017, 5(1):154-165.
    [10] MAO D, YU S, RYSZ M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants[J]. Water Research, 2015, 85:458-466.
    [11] HUANG Z F, ZHAO W T, XU T, et al. Occurrence and distribution of antibiotic resistance genes in the water and sediments of Qingcaosha Reservoir, Shanghai, China[J]. Environmental Sciences Europe, 2019, 31(1):81-89.
    [12] AMINOV R, CHEE-SANFORD J, GARRIGUES N, et al. Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria[J]. Applied and Environmental Microbiology, 2002, 68(4):1786-1793.
    [13] AMINOV R, GARRIGUES-JEANJEAN N, MACKIE R I. Molecular ecology of tetracycline resistance:Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins[J]. Applied and Environmental Microbiology, 2001, 67(1):22-32.
    [14] YANG Y, ZHANG T, ZHANG X X, et al. Quantification and characterization of β-lactam resistance genes in 15 sewage treatment plants from East Asia and North America[J]. Applied Microbiology and Biotechnology, 2012, 95(5):1351-1358.
    [15] DANG B J, MAO D Q, XU Y, et al. Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes[J]. Water Research, 2017, 111:81-91.
    [16] PEI R, KIM S C, CARLSON K H, et al. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG)[J]. Water Research, 2006, 40(12):2427-2435.
    [17] LUO Y, MAO D, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19):7220-7225.
    [18] XU Y, XU J, MAO D Q, et al. Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale[J]. Environmental Pollution, 2017, 220:900-908.
    [19] SUZUKI M T, TAYLOR L T, DELONG E F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays[J]. Applied and Environmental Microbiology, 2000, 66(11):4605-4614.
    [20] ZHANG S H, LV X Y, HAN B, et al. Prevalence of antibiotic resistance genes in antibiotic-resistant Escherichia coliisolates in surface water of Taihu Lake Basin, China[J]. Environmental Science and Pollution Research, 2015, 22(15):11412-11421.
    [21] GUO X P, LI J, YANG F, et al. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China[J]. Science of The Total Environment, 2014, 493:626-631.
    [22] RODRIGUEZ-MOZAZ S, CHAMORRO S, MARTI E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J]. Water Research, 2015, 69:234-242.
    [23] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782.
    [24] CHEN B W, LIANG X M, HUANG X P, et al. Differentiating anthropogenic impacts on ARGs in the Pearl River Estuary by using suitable gene indicators[J]. Water Research, 2013, 47(8):2811-2820.
    [25] JIANG L, HU X L, YIN D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6):822-828.
    [26] STORTEBOOM H, ARABI M, DAVIS J G, et al. Tracking antibiotic resistance genes in the south platte river basin using molecular signatures of urban, agricultural, and pristine sources[J]. Environmental Science & Technology, 2010, 44(19):7397-7404.
    [27] MA Y P, LI M, WU M M, et al. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge[J]. Science of the Total Environment, 2015, 518/519:498-506.
    [28] STEDTFELD R D, STEDTFELD T M, WASEEM H, et al. Isothermal assay targeting class 1 integrase gene for environmental surveillance of antibiotic resistance markers[J]. Journal of Environmental Management, 2017, 198:213-220.
    [29] STOKES H T, HALL R M. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions:Integrons[J]. Molecular Microbiology, 1989, 3(12):1669-1683.
    [30] 苏志国, 张衍, 代天娇, 等. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 2018, 45(10):2217-2233.

    SU Z G, ZHANG Y, DAI T J, et.al. Antibiotic resistance genes and class 1 integron in the environment:research progress[J]. Microbiology China, 2018, 45(10):2217-2233(in Chinese).

    [31] NA G S, ZHANG W R, ZHOU S Y, et al. Sulfonamide antibiotics in the Northern Yellow Sea are related to resistant bacteria:Implications for antibiotic resistance genes[J]. Marine Pollution Bulletin, 2014, 84(1/2):70-75.
    [32] CHEN B W, LIANG X M, NIE X P, et al. The role of class I integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China[J]. Journal of Hazardous Materials, 2015, 282:61-67.
    [33] WANG C, LU G H, WANG P F, et al. Assessment of environmental pollution of Taihu Lake by combining active biomonitoring and integrated biomarker response[J]. Environmental Science & Technology, 2011, 45(8):3746-3752.
    [34] XU J, ZHANG Y, ZHOU C B, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China[J]. Science of the Total Environment, 2014, 497/498:267-273.
    [35] 肖鑫鑫, 吴亦潇, 丁惠君, 等. 武汉城市湖泊抗生素及抗性基因的污染特征研究[J]. 环境科学与技术, 2019, 42(3):9-16.

    XIAO X X, WU Y X, DING H J, et al. Pollution characteristics of antibiotics and antibiotic resistance genes in urban lakes of Wuhan[J]. Environmental Science & Technology, 2019, 42(3):9-16(in Chinese).

    [36] 房平, 代鹤峰, 庄僖, 等. 东江下游典型饮用水源地抗生素抗性基因分布研究[J]. 生态环境学报, 2019, 28(3):548-554.

    FANG P, DAI H F, ZHUANG X, el al. Distribution of antibiotic resistance genes in typical drinking water sources in the lower Dongjiang River[J]. Ecology and Environment, 2019, 28(3):548-554(in Chinese).

  • 加载中
计量
  • 文章访问数:  1699
  • HTML全文浏览数:  1699
  • PDF下载数:  65
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-15

太湖周边饮用水处理厂中抗生素抗性基因污染分布特征

基金项目:

水体污染控制与治理科技重大专项(2017ZX07201005)资助.

摘要: 为研究太湖周边不同水源的饮用水处理厂中抗生素抗性基因污染的分布特征,文章采用实时荧光定量PCR法对4个饮用水厂原水中12种ARGs(包括磺胺类sul1、sul2;四环素类tetCtetWβ-内酰胺类blaTEM-1blaOXA-1blaampC;大环内酯类mphAermB;氨基糖苷类strA、aacC4;喹诺酮类qnrS)及Ⅰ类整合酶基因intⅠ1进行定性定量分析.结果表明,sul1、sul2、tetCblaTEM-1blaOXA-1mphAstrAqnrSintⅠ1的检出率均为100%,其中磺胺类抗性基因sul1相对丰度最高(1.68×10-3—6.21×10-2),属于优势抗性基因.在4个水厂原水中,以太湖为水源的B水厂中检出ARGs的种类最多且相对丰度最高,而以长江为水源的D水厂中ARGs相对丰度水平最低.intⅠ1相对丰度和6种抗性基因相对丰度(sul2、tetCblaTEM-1blaOXA-1mphAqnrS)呈显著正相关(P<0.05),说明intⅠ1介导的ARGs水平转移是环境中微生物获得耐药性的重要途径.根据基因丰度检测结果结合水源分析,太湖区域水体ARGs污染水平高于长江下游水体.本研究充分阐明了太湖和长江下游原水中抗生素抗性基因的污染特征,为今后饮用水处理中对抗生素抗性基因的去除提供理论依据和数据支撑.

English Abstract

参考文献 (36)

目录

/

返回文章
返回