硅掺杂碳点荧光猝灭法检测废水中钴离子
Determination of cobalt by silicon doped carbon dots fluorescence spectrophotometer
-
摘要: 以二乙烯三胺基丙基三甲氧基硅烷与甘油混合前驱物,采用水热一步法合成高荧光产率(25%)硅掺杂碳点(Si-CDs),通过透射电镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)对Si-CDs进行了表征,通过荧光光谱、紫外可见光谱对Si-CDs光学性能进行研究.基于Co2+对Si-CDs荧光猝灭效应,将其作为荧光探针检测Co2+,在Co2+浓度为0.1—50 μmol·L-1范围内Si-CDs的荧光猝灭强度与其浓度呈现良好的线性关系,相关系数为0.9915,检出限为74 nmol·L-1.方法用于环境水样中Co2+测定,回收率在97.18%—102.3%.Abstract: A method for preparation of the silicon doped carbon dots (Si-CDs) was established via hydrothermal method by using diethylenetriaminopropyltrimethylsilane and glycerin as precursors. The as-prepared Si-CDs were characterized by transmission electron microscopy (TEM), X Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), fluorescence spectrophotometer and UV-vis absorption spectra. The detection of cobalt(Ⅱ) ion(Co2+) was set up based on the fluorescence quenching of Si-CDs. A good linear range from 0.1-50 μmol·L-1 was obtained between fluorescence quenching and concentration of Co2+ with detection limit of 74 nmol·L-1,and the correlation coefficient was 0. 9915. Finally, this method was applied in the analysis of waste water samples with the recoveries of 97.18%—102. 3%.
-
Key words:
- silicon doped carbon dots /
- Co2+ /
- fluorescence quenching /
- waste water samples
-
-
[1] BARCELOUX D G. Cobalt[J]. Journal of Toxicology-Clinical Toxicology, 1999, 37(2):201-216. [2] AWUAL M R, ISMAEL M, YAITA T. Efficient detection and extraction of cobalt(Ⅱ) from lithium ion batteries and wastewater by novel composite adsorbent[J]. Sensors & Actuators B-Chemical, 2014, 191:9-18. [3] LIAO S, ZHU F, ZHAO X, et al. A reusable P, N-doped carbon quantum dot fluorescent sensor for cobalt ion[J]. Sensors & Actuators B-Chemical, 2018, 260:156-164. [4] 张秀清,彭君,凌剑,等.基于银纳米三角片与罗丹明6G的荧光共振能量转移法检测钴离子[J].光谱学与光谱分析,2015,35(4):951-955. ZHANG X Q, PENG J, LING J, et al. Fluorescence resonance energy transfer detection of cobalt ions by silver triangular nanoplates and rhodamine 6G[J].Spectroscopy and Spectral Analysis, 2015,35(4):951-955(in Chinese).
[5] MANOHAR D M, NOELINE B F, ANIRUDHAN T S. Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(Ⅱ) from aqueous phase[J]. Applied Clay Science,2006, 31(3/4):194-206. [6] RAFIGHI P, YAFTIAN M R, NOSHIRANZADEH N. Solvent extraction of cobalt(Ⅱ) ions; cooperation of oximes and neutral donors[J]. Separation & Purification Technology, 2010, 75(1):32-38. [7] 朱国忠,徐艳燕,庞燕. 连续光源火焰原子吸收光谱法测定氧化镍中钴铜锌铁钙镁[J].冶金分析,2017,37(3):48-52. ZHU G Y, XU Y Y, PANG Y. Determination of cobalt, copper, zinc, iron, calcium and magnesium in nickel oxide by continuum source flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2017,37(3):48-52(in Chinese).
[8] 张皓爽,姬泓巍,宰敬喆,等.过氧化氢-茜素红s体系催化动力学分光光度法测量痕量钴(Ⅱ)[J]. 中国海洋大学学报,2017,47(11):61-69. ZHANG H S, JI H W, ZAI J Z, et al. Catalytic kinetic determination of trace cobalt (Ⅱ) based on oxidation of alizarin red s by hydrogen peroxide[J]. Periodical of Ocean University of China, 2017,47(11):61-69(in Chinese).
[9] 王妍,贾红霞,曹雨虹,等.基于硫化镉量子点的荧光猝灭效应测定微量钴离子[J].理化检验:化学分册,2016, 52(10):1123-1126. WANG Y, JIA H X, CAO Y H, et al. Determination of trace amount of Co2+ based on the fluorescence quenching effect of CdS quantum dots[J], PTCA (PART B:CHEM. ANAL.), 2016, 52(10):1123-1126(in Chinese).
[10] 黄间珍.电感耦合等离子体原子发射光谱法测定铝合金中硼铋镉钴镓锂[J].冶金分析,2017, 37(6):80-84. HUANG J Z. Determination of boron, bismuth, cadmium, cobalt, gallium, lithium in aluminum alloy by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(6):80-84(in Chinese).
[11] 徐基贵,张俊俊,陈志兵,等. CdTe量子点荧光猝灭法测定痕量铬(Ⅲ)[J].分析试验室,2011,30(1):26-28. XU J G, ZHANG J J, CHEN Z B, et al. Determination of chromium(Ⅲ) by its quenching effect on the fluorescence intensity of CdTe quantum dots[J]. Chinese Journal of Analysis Laboratory, 2011, 30(1):26-28(in Chinese).
[12] 陶慧林,黎舒怀,徐铭泽,等.基于CdTe量子点荧光探针测定水样中痕量Cd2+[J].分析科学学报,2013,29(5):639-642. TAO H L, LI S H, XU M Z, et al. Determination of trace cadmium in water samples based on CdTe quantum dot fluorescent probes[J]. Journal of Analytical Science, 2013,29(5):639-642(in Chinese).
[13] BERNARDI M, LOHRMAN J, KUMAR P V, et al. Nanocarbon-based photovoltaics[J]. ACS Nano, 2012, 6(10):8896-8903. [14] RAMUZ M P, VOSGUERITCHIAN M, WEI P, et al. Evaluation of solution processable carbon-based electrodes for all carbon solar cells[J]. ACS Nano, 2012, 6(11):10384-10395. [15] ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors,and bioimaging[J]. Angewandte Chemie-International Edition, 2013, 52(14):3953-3957. [16] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24):7756-7757. [17] 宋兴良, 胡雪萍, 刘洁, 等. 掺氮碳量子点的制备及对偶氮类色素的荧光检测[J].环境化学, 2019, 38(3):522-530. SONG X L, HU X P, LIU J, et al. Preparation of nitrogen-doped carbon quantum dots and application to fluorescent detection of azo dyes[J]. Environmental Chemistry, 2019, 38(3):522-530(in Chinese).
[18] 孙雪花,尹惠,柴红梅等.L-赖氨酸修饰的荧光碳量子点的制备及在钴测定中的应用. 冶金分析,2018,38(11):75-80. YIN H,CHAI H M,et al.Preparation of L-lysine modified fluorescent carbon quantum dots and its application in determination of cobalt[J].Metallurgical Analysis,2018,38(11):75-80(in Chinese).
[19] 罗道成,罗铸.碳点荧光猝灭法测定粉煤灰中痕量钴[J].冶金分析,2015,35(9):62-67. LUO D C, LUO Z. Determination of trace cobalt in fly ash by carbon dots fluorescence quenching method[J].Metallurgical Analysis,2015,35(9):62-67(in Chinese).
-

计量
- 文章访问数: 1841
- HTML全文浏览数: 1841
- PDF下载数: 37
- 施引文献: 0