人工神经网络优化电活化硫酸盐降解微囊藻毒素

董皓月, 范莎莎, 金春姬, 高孟春, 佘宗莲, 赵阳国. 人工神经网络优化电活化硫酸盐降解微囊藻毒素[J]. 环境化学, 2020, (12): 3390-3401. doi: 10.7524/j.issn.0254-6108.2019092501
引用本文: 董皓月, 范莎莎, 金春姬, 高孟春, 佘宗莲, 赵阳国. 人工神经网络优化电活化硫酸盐降解微囊藻毒素[J]. 环境化学, 2020, (12): 3390-3401. doi: 10.7524/j.issn.0254-6108.2019092501
DONG Haoyue, FAN Shasha, JIN Chunji, GAO Mengchun, SHE Zonglian, ZHAO Yangguo. Degradation of microcystin-IR by electrochemically activated sulfate:Variable evaluation and model construction using artificial neural network[J]. Environmental Chemistry, 2020, (12): 3390-3401. doi: 10.7524/j.issn.0254-6108.2019092501
Citation: DONG Haoyue, FAN Shasha, JIN Chunji, GAO Mengchun, SHE Zonglian, ZHAO Yangguo. Degradation of microcystin-IR by electrochemically activated sulfate:Variable evaluation and model construction using artificial neural network[J]. Environmental Chemistry, 2020, (12): 3390-3401. doi: 10.7524/j.issn.0254-6108.2019092501

人工神经网络优化电活化硫酸盐降解微囊藻毒素

    通讯作者: 金春姬, E-mail: jinhou@ouc.edu.cn
  • 基金项目:

    中央高校基本科研业务费专项基金(201964004)资助.

Degradation of microcystin-IR by electrochemically activated sulfate:Variable evaluation and model construction using artificial neural network

    Corresponding author: JIN Chunji, jinhou@ouc.edu.cn
  • Fund Project: Supported by the Fundamental Research Funds for the Central Universities (201964004).
  • 摘要: 微囊藻毒素-LR(microcystin-LR,MC-LR)是一种威胁饮用水安全且难降解的蓝藻毒素.掺硼金刚石(boron-doped diamond,BDD)阳极电化学氧化水中MC-LR的反应机理和电解质种类密切相关.本研究通过比较两种电解质(Na2SO4和惰性的NaNO3)条件下,电流密度、循环流速、电解质浓度、反应时间对MC-LR去除效果的影响来分析Na2SO4条件下的反应机理.研究发现Na2SO4作电解质对MC-LR去除效率优于NaNO3,最大反应速率常数达到0.1374 min-1,最短半衰期为5.04 min,这是由于体系产生了硫酸根自由基.电子自旋共振谱图与过硫酸盐检测结果进一步证明,BDD/Na2SO4体系电化学氧化MC-LR实际上包含电活化硫酸盐产生硫酸根自由基的过程.前向型人工神经网络模型被用以反映传质对电活化硫酸盐工艺的影响.经过基因算法优化,模型对于MC-LR浓度变化具有一定的泛化能力.模型表明,传质控制下增大MC-LR浓度,循环流速的权重降低,最佳循环流速降低.使用粒子群算法寻优:电流密度45 mA·cm-2,循环流速180 min·L-1,电解质浓度140 mmol·L-1,处理30 min得到MC-LR最大去除率98.36%,表明人工神经网络优化电活化硫酸盐降解MC-LR具有应用前景.
  • 加载中
  • [1] IMANISHI S, HARADA K I. Proteomics approach on microcystin binding proteins in mouse liver for investigation of microcystin toxicity[J]. Toxicon, 2004, 43(6):651-659.
    [2] LAHTI K, RAPALA J, FÄRDIG M, et al. Persistence of cyanobacterial hepatotoxin, microcystin-LR in particulate material and dissolved in lake water[J]. Water Research, 1997, 31(5):1005-1012.
    [3] WHO, WHO guidelines for drinking-water quality:Fourth edition[S]. 2011.
    [4] PANIZZA M, CERISOLA G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12):6541.
    [5] TRAN N, DROGUI P. Electrochemical removal of microcystin-LR from aqueous solution in the presence of natural organic pollutants[J]. Journal of Environmental Management, 2013, 114(8):253-260.
    [6] COMNINELLIS C, NERINI A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment[J]. Journal of Applied Electrochemistry, 1995, 25(1):23-28.
    [7] BONFATTI F, DE B A, FERRO S, et al. Anodic mineralization of organic substrates in chloride-containing aqueous media[J]. Electrochimica Acta, 2000, 46(2):305-314.
    [8] LIU Y, FAN X, QUAN X, et al. Enhanced perfluorooctanoic acid degradation by electrochemical activation of sulfate solution on B/N codoped diamond[J]. Environmental Science & Technology, 2019, 53(9):5195-5201.
    [9] FARHAT A, KELLER J, TAIT S, et al. Removal of persistent organic contaminants by electrochemically activated sulfate[J]. Environmental Science & Technology, 2015, 49(24):14326-14333.
    [10] ZHOU S, BU L, SHI Z, et al. Electrochemical inactivation of Microcystis aeruginosa using BDD electrodes:Kinetic modeling of microcystins release and degradation[J]. Journal of Hazardous Materials, 2018, 346:73-81.
    [11] LIAO W, MURUGANANTHAN M, ZHANG Y. Electrochemical degradation and mechanistic analysis of microcystin-LR at boron-doped diamond electrode[J]. Chemical Engineering Journal, 2014, 243:117-126.
    [12] LIU B, JIN C, WAN J, et al. Modelling and optimizing an electrochemical oxidation process using artificial neural network, genetic algorithm and particle swarm optimization[J]. Journal of the Serbian Chemical Society, 2018,83(3):379-390.
    [13] REZAEI VAHIDIAN H, SOLEYMANI A R, BASIRI PARSA J. Development of a four-layered ANN for simulation of an electrochemical water treatment process[J]. Desalination and Water Treatment, 2015, 56(2):388-398.
    [14] MOHAJERANI M, MEHRVAR M, EIN-MOZAFFARI F. Nonlinear modeling for the degradation of aqueous azo dyes by combined advanced oxidation processes using artificial neural networks[J]. Chemical Product and Process Modeling, 2011, DOI:https://doi.org/10.2202/1934-2659.1562.
    [15] WAN J, JIN C, LIU B, et al. Electrochemical oxidation of sulfamethoxazole using Ti/SnO2-Sb/Co-PbO2 electrode through ANN-PSO[J]. Journal of the Serbian Chemical Society, 2019, 84(7):713-727.
    [16] BIGLARIJOO N, MIRBAGHERI S A, Bagheri M, et al. Assessment of effective parameters in landfill leachate treatment and optimization of the process using neural network, genetic algorithm and response surface methodology[J]. Process Safety and Environmental Protection, 2017, 106:89-103.
    [17] AZADI S, AMIRI H, RAKHSHANDEHROO G R. Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills[J]. Waste Management, 2016, 55:220-230.
    [18] ZHANG Y, GAO X, SMITH K, et al. Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network[J]. Water Research, 2019, 164:10.1016/j.watres.2019.114888
    [19] DU J, GUO W, WANG H, et al. Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2:Kinetics, mechanisms, and pathways[J]. Water Research, 2018, 138:323-332.
    [20] YIN R, GUO W, WANG H, et al. Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway:Performance and mechanism[J]. Chemical Engineering Journal, 2019, 357:589-599.
    [21] CAI J, NIU T, SHI P, et al. Boron-doped diamond for hydroxyl radical and sulfate radical anion electrogeneration, transformation, and voltage-free sustainable oxidation[J]. Small, 2019, 15(48):10.1002/smll.201900153
    [22] DAVIS J, BAYGENTS J C, FARRELL J. Understanding persulfate production at boron doped diamond film anodes[J]. Electrochimica Acta, 2014, 150:68-74.
    [23] ZHANG B T, ZHANG Y, TENG Y, et al. Sulfate radical and its application in decontamination technologies[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(16):1756-1800.
    [24] WARDMAN P. Reduction potentials of one-electron couples involving free radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1989, 18(4):1637-1755.
    [25] ANTONIOU M G, DE L C A A, DIONYSIOU D D. Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e- transfer mechanisms[J]. Applied Catalysis B Environmental, 2010, 96(3/4):290-298.
    [26] ANTONIOU M G, DE L C A A, DIONYSIOU D D. Intermediates and reaction pathways from the degradation of microcystin-LR with sulfate radicals[J]. Environmental Science & Technology, 2010, 44(19):7238-7244.
    [27] PANIZZA M, CERISOLA G. Application of diamond electrodes to electrochemical processes[J]. Electrochimica Acta, 2005, 51(2):191-199.
    [28] ZHANG C, FU D, GU Z. Degradation of microcystin-RR using boron-doped diamond electrode[J]. Journal of Hazardous Materials, 2009, 172(2/3):847-853.
    [29] DAVIS J R, BAYGENTS J C, FARRELL J. Effect of current density and sulfuric acid concentration on persulfuric acid generation by boron-doped diamond film anodes[J]. Journal of Applied Electrochemistry, 2014, 44(7):841-848.
    [30] GARSON D. Interpreting neural network connection strengths[J]. AI Expert, 1991, 6(7):47-51.
  • 加载中
计量
  • 文章访问数:  2035
  • HTML全文浏览数:  2035
  • PDF下载数:  38
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-25
董皓月, 范莎莎, 金春姬, 高孟春, 佘宗莲, 赵阳国. 人工神经网络优化电活化硫酸盐降解微囊藻毒素[J]. 环境化学, 2020, (12): 3390-3401. doi: 10.7524/j.issn.0254-6108.2019092501
引用本文: 董皓月, 范莎莎, 金春姬, 高孟春, 佘宗莲, 赵阳国. 人工神经网络优化电活化硫酸盐降解微囊藻毒素[J]. 环境化学, 2020, (12): 3390-3401. doi: 10.7524/j.issn.0254-6108.2019092501
DONG Haoyue, FAN Shasha, JIN Chunji, GAO Mengchun, SHE Zonglian, ZHAO Yangguo. Degradation of microcystin-IR by electrochemically activated sulfate:Variable evaluation and model construction using artificial neural network[J]. Environmental Chemistry, 2020, (12): 3390-3401. doi: 10.7524/j.issn.0254-6108.2019092501
Citation: DONG Haoyue, FAN Shasha, JIN Chunji, GAO Mengchun, SHE Zonglian, ZHAO Yangguo. Degradation of microcystin-IR by electrochemically activated sulfate:Variable evaluation and model construction using artificial neural network[J]. Environmental Chemistry, 2020, (12): 3390-3401. doi: 10.7524/j.issn.0254-6108.2019092501

人工神经网络优化电活化硫酸盐降解微囊藻毒素

    通讯作者: 金春姬, E-mail: jinhou@ouc.edu.cn
  • 1. 中国海洋大学环境科学与工程学院, 青岛, 266100;
  • 2. 中国海洋大学海洋环境与生态教育部重点实验室, 青岛, 266100
基金项目:

中央高校基本科研业务费专项基金(201964004)资助.

摘要: 微囊藻毒素-LR(microcystin-LR,MC-LR)是一种威胁饮用水安全且难降解的蓝藻毒素.掺硼金刚石(boron-doped diamond,BDD)阳极电化学氧化水中MC-LR的反应机理和电解质种类密切相关.本研究通过比较两种电解质(Na2SO4和惰性的NaNO3)条件下,电流密度、循环流速、电解质浓度、反应时间对MC-LR去除效果的影响来分析Na2SO4条件下的反应机理.研究发现Na2SO4作电解质对MC-LR去除效率优于NaNO3,最大反应速率常数达到0.1374 min-1,最短半衰期为5.04 min,这是由于体系产生了硫酸根自由基.电子自旋共振谱图与过硫酸盐检测结果进一步证明,BDD/Na2SO4体系电化学氧化MC-LR实际上包含电活化硫酸盐产生硫酸根自由基的过程.前向型人工神经网络模型被用以反映传质对电活化硫酸盐工艺的影响.经过基因算法优化,模型对于MC-LR浓度变化具有一定的泛化能力.模型表明,传质控制下增大MC-LR浓度,循环流速的权重降低,最佳循环流速降低.使用粒子群算法寻优:电流密度45 mA·cm-2,循环流速180 min·L-1,电解质浓度140 mmol·L-1,处理30 min得到MC-LR最大去除率98.36%,表明人工神经网络优化电活化硫酸盐降解MC-LR具有应用前景.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回