微囊藻毒素对黄瓜幼苗抗氧化酶及其同工酶的影响

顾艳芳, 邓媛, 梁婵娟. 微囊藻毒素对黄瓜幼苗抗氧化酶及其同工酶的影响[J]. 环境化学, 2020, (12): 3402-3409. doi: 10.7524/j.issn.0254-6108.2019090202
引用本文: 顾艳芳, 邓媛, 梁婵娟. 微囊藻毒素对黄瓜幼苗抗氧化酶及其同工酶的影响[J]. 环境化学, 2020, (12): 3402-3409. doi: 10.7524/j.issn.0254-6108.2019090202
GU Yanfang, DENG Yuan, LIANG Chanjuan. Effect of microcystins on antioxidative enzymes activities and isozymes pattern in cucumber seedlings[J]. Environmental Chemistry, 2020, (12): 3402-3409. doi: 10.7524/j.issn.0254-6108.2019090202
Citation: GU Yanfang, DENG Yuan, LIANG Chanjuan. Effect of microcystins on antioxidative enzymes activities and isozymes pattern in cucumber seedlings[J]. Environmental Chemistry, 2020, (12): 3402-3409. doi: 10.7524/j.issn.0254-6108.2019090202

微囊藻毒素对黄瓜幼苗抗氧化酶及其同工酶的影响

    通讯作者: 梁婵娟, E-mail: liangchanjuan@jiangnan.edu.cn
  • 基金项目:

    国家自然科学基金(31971407,31370517)和江苏省自然科学基金(BK20161131)资助.

Effect of microcystins on antioxidative enzymes activities and isozymes pattern in cucumber seedlings

    Corresponding author: LIANG Chanjuan, liangchanjuan@jiangnan.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (31971407, 31370517) and the Jiangsu Province Natural Science Foundation (BK20161131).
  • 摘要: 为了进一步清晰作物对微囊藻毒素(MCs)的适应性机制,本文通过水培实验研究了不同浓度MCs(5、10、50、100 μg·L-1)对黄瓜幼苗叶片抗氧化酶活性及其同工酶组成、活性氧(ROS)积累与质膜过氧化及生长的影响.结果表明,MCs(5—50 μg·L-1)胁迫7 d后黄瓜叶片中过氧化物酶(POD)和过氧化氢酶(CAT)同工酶条带变粗变亮,酶活性上升,其中POD活性增幅大于CAT,且POD同工酶有新条带出现(对照处理未见).而超氧化物歧化酶(SOD)活性与其同工酶组成均无变化,因而超氧阴离子(O2·-)的增幅高于过氧化氢(H2O2),致使丙二醛(MDA)含量增加,而黄瓜幼苗干重降低.100 μg·L-1 MCs处理黄瓜叶片POD和CAT活性增幅最大,且同工酶条带宽度和亮度高于其他处理,但不同SOD同工酶出现不同的响应,SOD活性仍与对照无显著差异,O2·-增幅加大,导致氧化损伤程度加剧,黄瓜幼苗干重降幅增大.恢复7 d后,5 μg·L-1 MCs处理黄瓜叶片SOD活性、CAT活性、丙二醛含量和黄瓜幼苗干重恢复至对照水平,10 μg·L-1和50 μg·L-1 MCs处理黄瓜幼苗各指标均优于胁迫期,而100 μg·L-1 MCs处理黄瓜氧化损伤不可逆,生长难以恢复.综上,MCs胁迫下黄瓜幼苗CAT和POD同工酶表达量增加有利于增强酶活性,清除MCs诱发的H2O2积累,增强黄瓜对MCs的耐受性,且调控能力受MCs浓度限制.
  • 加载中
  • [1] RASTOGI R P, SINHA R P, INCHAROENSAKDI A. The cyanotoxin-microcystins:Current overview[J]. Reviews in Environmental Science and Bio-Technology, 2014, 13(2):215-249.
    [2] MACHADA J, CAMPOS A, VASCONCELOS V, et al. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems:A review of their relevance for agricultural plant quality and public health[J]. Environmental Research, 2017, 153:191-204.
    [3] LIANG C, WANG W M, WANG Y. Effect of irrigation with microcystins-contaminated water on growth, yield and grain quality of rice (Oryza sativa)[J]. Environmental Earth Sciences, 2016, 75(6):1-10.
    [4] ZHU J Z, REN X Q, LIU H Y, et al. Effect of irrigation with microcystins-contaminated water on growth and fruit quality of Cucumis sativus L. and the health risk[J]. Agricultural Water Management, 2018, 204:91-99.
    [5] MACHADO J, AZEVEDO J, FREITAS M, et al. Analysis of the use of microcystin-contaminated water in the growth and nutritional quality of the root-vegetable, Daucus carota[J]. Environmental Science and Pollution Research, 2017, 24(1):752-764.
    [6] CAO Q, STEINMAN A D, YAO L, et al. Increment of root membrane permeability caused by microcystins result in more elements uptake in rice (Oryza sativa)[J]. Ecotoxicology and Environmental Safety, 2017, 145:431-435.
    [7] REDOUANE E M, El AMRANI ZERRIFI S, El KHALLOUFI F, et al. Mode of action and fate of microcystins in the complex soil-plant ecosystems[J]. Chemosphere, 2019, 225:270-281.
    [8] JIANG J, SHAN Z, ZHOU J, et al. Effects of microcystin-LR on photosynthetic activity and chloroplast ultrastructure of rice (Oryza sativa L. japonica) leaves[C]. Abstracts of Papers of the American Chemical Society, 2014:248.
    [9] GARDA T, RIBA M, VASAS G, et al. Cytotoxic effects of cylindrospermopsin in mitotic and non-mitotic Vicia faba cells[J]. Chemosphere, 2015, 120:145-153.
    [10] CHEN J Z, SONG L R, DAI E, et al. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.)[J]. Toxicon, 2004, 43(4):393-400.
    [11] CAO Q, REDISKE R R, YAO L, et al. Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa)[J]. Ecotoxicology and Environmental Safety, 2018, 149:143-149.
    [12] 邹春静, 盛晓峰, 韩文卿, 等. 同工酶分析技术及其在植物研究中的应用[J]. 生态学杂志, 2003, 22(6):63-69.

    ZOU C J, SHENG X F, HAN W Q, et al. Isozyme analysis technology and its application in plant research[J]. Chinese Journal of Ecology, 2003, 22(6):63-69(in Chinese).

    [13] 闫海, 潘纲, 张明明, 等.微囊藻毒素的提取和提纯研究[J].环境科学学报, 2004, 24(2):355-359.

    YAN H, PAN G, ZHANG M M, et al. Study on the extraction and purification of microcystins[J]. Acta Scientiae Circumstantiae, 2004, 24(2):355-359(in Chinese).

    [14] LI H, CHENG Z. Hoagland nutrient solution promotes the growth of cucumber seedlings under light-emitting diode light[J]. Acta Agriculturae Scandinavica, 2015, 65(1):74-82.
    [15] SHARMA P, KUMAR A, BHARDAWAJ R. Plant steroidal hormone epibrassinolide regulate-heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression[J]. Environmental and Experimental Botany, 2016, 122:1-9.
    [16] BRADFORD M M. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2):248-254.
    [17] WOODBURY W, SPENCER A K, STAHMAN M A. An improved procedure using ferricyanide for detecting catalase isozymes[J]. Analytical Biochemistry, 1971, 44(1):301-305.
    [18] 王秀芬. 过氧化物酶同工酶最佳染色法[J]. 河北农业大学学报, 1990, 13(4):82-84.

    WANG X F. A goog dyeing method for superoxide isoenzyme[J]. Journal of Hebei Argriultural University, 1990, 13(4):82-84(in Chinese).

    [19] FIDALGO F, AZENHA M, SILVA A F, et al. Copper-induced stress in Solanum nigrum L. and antioxidant defense system responses[J]. Food and Energy Security, 2013, 2(1):70-80.
    [20] PUCKETTE M C, WENG H, MAHALINGAM R. Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula[J]. Plant Physiology and Biochemistry, 2007, 45(1):70-79.
    [21] MUKHERJEE S P, CHOUDHURI M A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings[J]. 1983, 58(2):166-170.
    [22] GAJEWSKA E, SKLODOWSKA M. Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves[J]. Biometals, 2007, 20(1):27-36.
    [23] 黄雪妮, 屈凡, 马名立, 等. 镉胁迫对2个宁夏主栽水稻品种幼苗期抗氧化同工酶亚基及其活性的影响[J]. 江苏农业科学, 2016, 44(7):107-112.

    HUANG X N, QU F, MA M L, et al. Effects of cadmium stress on antioxidant isoenzyme and enzyme activities of two main rice cultivars at seedling stage in Ningxia area[J]. Jiangsu Agricultural Sciences, 2016, 44(7):107-112(in Chinese).

    [24] WANG Y, BRANICKY R, NOE A, et al. Superoxide dismutases:Dual roles in controlling ROS damage and regulating ROS signaling[J]. Journal of Cell Biology, 2018, 217(6):1915-1928.
    [25] 李荣锦, 张敏, 蒋泽平, 等. NaCl胁迫对构树组培苗抗氧化酶活性及同工酶谱的影响[J]. 林业科学, 2009, 45(2):39-47.

    LI R J, ZHANG M, JIANG Z P, et al. Effect of NaCl stress on antioxidant enzyme activities and isoenzyme pattern of Broussonetia papyrifera plantlets[J]. Scientia Silvae Sinicae, 2009, 45(2):39-47(in Chinese).

    [26] RACCHI M L. Antioxidant defenses in plants with attention to Prunus and Citrus spp[J]. Antioxidants (Basel), 2013, 2(4):340-369.
    [27] 赵会君, 马名立, 代飞燕, 等. 盐胁迫对宁夏水稻不同品种萌发指标和同工酶的影响[J]. 江苏农业科学, 2018, 46(20):44-47.

    ZHAO H J, MA M L, DAI F Y, et al. Effects of NaCl stress on seed germination and isoenzymes of different Ningxia rice cultivars[J]. Jiangsu Agricultural Sciences, 2018, 46(20):44-47(in Chinese).

    [28] DU C X, FAN H F, GUO S R, et al. Applying spermidine for differential responses of antioxidant enzymes in cucumber subjected to short-term salinity[J]. Journal of the American Society for Horticultural Science, 2010, 135(1):18-24.
    [29] 王娓敏, 邓玙, 邹华, 等. 微囊藻毒素对水稻根系生长和抗氧化系统的影响[J]. 环境科学, 2014, 35(4):1468-1472.

    WANG W M, DENG Y, ZOU H, et al. Effects of microcystins on growth and antioxidant system of rice roots[J]. Environmental Science, 2014, 35(4):1468-1472(in Chinese).

    [30] 郭小境, 王锦莹, 任潇茜, 等. 梁婵娟水稻根系抗氧化酶及其同工酶对酸雨胁迫的响应[J]. 环境化学, 2019, 38(2):377-384.

    GUO X J, WANG J Y, REN X Q, et al. Response of antioxidant enzyme activities and isozyme pattern in rice roots to acid rain stress[J]. Environmental Chemistry, 2019, 38(2):377-384(in Chinese).

    [31] 惠俊爱, 党志, 叶庆生. 镉胁迫对玉米叶片抗氧化酶同工酶的影响[C]. 全国农业环境科学学术研讨会, 2009:41-46. HUI J A, DANG Z, YE Q S. Effects of Cadmium stress on antioxidase isozyme in leaves of maize[C]. Proceedings of the National Symposium on Agricultural Environmental Science, 2009:41

    -46(in Chinese).

    [32] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930.
    [33] BITTENCOURT-OLIVEIRA M C, HEREMAN T C, MACEDO-SILVA I, et al. Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria[J]. Brazilian Journal of Biology, 2015, 75(2):273-278.
    [34] DING W, NAM ONG C J F M L. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity[J]. Fems Microbiology Letters, 2003, 220(1):1-7.
    [35] 王余, 朱雯倩, 王娓敏, 等. 微囊藻毒素对水稻幼苗生长与叶绿素荧光的影响[J]. 环境科学学报, 2015, 35(2):602-607.

    WANG Y, ZHU W Q, WANG W M, et al. Effects of microcystins on growth and chlorophyll fluorescence in rice seedlings[J]. Acta Scientiae Circumstantiae 2015, 35(2):602-607(in Chinese).

    [36] BURATTI F M, MANGANELLI M, VICHI S, et al. Cyanotoxins:producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation[J]. Archives of Toxicology, 2017, 91(3):1049-1130.
  • 加载中
计量
  • 文章访问数:  1767
  • HTML全文浏览数:  1767
  • PDF下载数:  28
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-02
顾艳芳, 邓媛, 梁婵娟. 微囊藻毒素对黄瓜幼苗抗氧化酶及其同工酶的影响[J]. 环境化学, 2020, (12): 3402-3409. doi: 10.7524/j.issn.0254-6108.2019090202
引用本文: 顾艳芳, 邓媛, 梁婵娟. 微囊藻毒素对黄瓜幼苗抗氧化酶及其同工酶的影响[J]. 环境化学, 2020, (12): 3402-3409. doi: 10.7524/j.issn.0254-6108.2019090202
GU Yanfang, DENG Yuan, LIANG Chanjuan. Effect of microcystins on antioxidative enzymes activities and isozymes pattern in cucumber seedlings[J]. Environmental Chemistry, 2020, (12): 3402-3409. doi: 10.7524/j.issn.0254-6108.2019090202
Citation: GU Yanfang, DENG Yuan, LIANG Chanjuan. Effect of microcystins on antioxidative enzymes activities and isozymes pattern in cucumber seedlings[J]. Environmental Chemistry, 2020, (12): 3402-3409. doi: 10.7524/j.issn.0254-6108.2019090202

微囊藻毒素对黄瓜幼苗抗氧化酶及其同工酶的影响

    通讯作者: 梁婵娟, E-mail: liangchanjuan@jiangnan.edu.cn
  • 1. 江苏省厌氧生物技术重点实验室, 江南大学环境与土木工程学院, 无锡, 214122;
  • 2. 江苏省水处理技术与材料协同创新中心, 无锡, 214122
基金项目:

国家自然科学基金(31971407,31370517)和江苏省自然科学基金(BK20161131)资助.

摘要: 为了进一步清晰作物对微囊藻毒素(MCs)的适应性机制,本文通过水培实验研究了不同浓度MCs(5、10、50、100 μg·L-1)对黄瓜幼苗叶片抗氧化酶活性及其同工酶组成、活性氧(ROS)积累与质膜过氧化及生长的影响.结果表明,MCs(5—50 μg·L-1)胁迫7 d后黄瓜叶片中过氧化物酶(POD)和过氧化氢酶(CAT)同工酶条带变粗变亮,酶活性上升,其中POD活性增幅大于CAT,且POD同工酶有新条带出现(对照处理未见).而超氧化物歧化酶(SOD)活性与其同工酶组成均无变化,因而超氧阴离子(O2·-)的增幅高于过氧化氢(H2O2),致使丙二醛(MDA)含量增加,而黄瓜幼苗干重降低.100 μg·L-1 MCs处理黄瓜叶片POD和CAT活性增幅最大,且同工酶条带宽度和亮度高于其他处理,但不同SOD同工酶出现不同的响应,SOD活性仍与对照无显著差异,O2·-增幅加大,导致氧化损伤程度加剧,黄瓜幼苗干重降幅增大.恢复7 d后,5 μg·L-1 MCs处理黄瓜叶片SOD活性、CAT活性、丙二醛含量和黄瓜幼苗干重恢复至对照水平,10 μg·L-1和50 μg·L-1 MCs处理黄瓜幼苗各指标均优于胁迫期,而100 μg·L-1 MCs处理黄瓜氧化损伤不可逆,生长难以恢复.综上,MCs胁迫下黄瓜幼苗CAT和POD同工酶表达量增加有利于增强酶活性,清除MCs诱发的H2O2积累,增强黄瓜对MCs的耐受性,且调控能力受MCs浓度限制.

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回